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CONVEXITY OF DOMAIN FUNCTIONAIS

by

P. R. Garabedian and M. Schiffer

CHAPTER I

INTRODUCT ION

1. Ouln f hppr

A problem of considerable significance is the study of the dependence

of the Green's function, Neumann's function, and eigenfin-'tions of a linear

elliptic partial differential equation on their domains of definition. The

importance of this question lies in the difficulty uhich is generally

encountered in the explicit calculation of such functions. Since elementary

formulas are the exception rather than the rule in the theory of partial

differential equations in an arbitrary domain, one turns to the investigation

of the properties of the basic solutions, and variational formulas exhibiting

the domain dependence of these solutions furnish one of the principal tools

of the investigation.

One of the most comm.on applications of the theory of variation of the

Green's function, Neumann's function and eigenfunctions arises in the study

of extremal problems for the capacity, virtual mniss and eigenvalues of a domain.

We are led to such extremal problems on the one hand in an attempt to estimate

these domain functionals in terms of the geometry of the domain, and on the

other hand by the equivalence of the solution of particular variational

problems with the existence and uniqueness of solutions of physical problems,

such as the construction of free boundary flows. Extensive investigations in



these two directions have been carried through for Laplace's equation in the

plane and also for other typical elliptic partial differential equations in

two independent variables [2, 7, 8, 9, 181.

In this paper, we develop a rigorous theory of variation of domain

functions in space of three dimensions as well as in the plane. We not only

present an adequate mathematical discussion of the classical Hadamard

variational formulas in space, but also generalize the so-called interior

variational method to three dimensions. We derive expressions for the second

variations of the capacity, virtual mass, and other physical quantities

already mentioned, and we deduce from them various interesting convexity

theorems for these domain functionals.

Our investigation of the second variation was motivated by the suggestion

of Max Shiffman that in cases where one can guess a domain for which a certain

combination of domain functionals is stationary, one might be able to apply

a minimax theory in order to prove that the domain in question actually

minimizes that combination, provided one could show that whenever the first

variation of the combination vanishes the second variation is positive-definite.

This suggestion is based on the fact that on certain surfaces, corresponding to

two points whose heights are relative minima thera exists a saddle-point. While

we have not had any direct success with this line of reasoning, we have been

able to deduce a number of uniqueness theorems from convexity properties of the

domain functionals which are based on the second variation, One should mention

in this connection the work of Friedrichs [ 6 1, who prozed by such a method

the uniqueness of certain free bcundary flows.

In Chapter II we define interior variations of a 3 -dimensional domain D

by means of differentiable mapping- of' D depending on a small paramete- F



The first order shifts in terms of E of the Green's function, Neumann's function

and eigenvalues which result from this variation of D are calculated rigorously

by referring all varied quantities back to the original domain D through the

infinitesimal mappings. The study of the domain dependence of these besic

functions for a given linear elliptic partial differential equation is thus

transformed into an investigation in the fixed domain D of the dependence of

the solution on the coefficients of the equation. Such an investigation is

readily carried through by Hilbert's classical method based on integral

equations ill. The variational formulas which result, for example, in the

case of the capacity, are given in terms of domain integrals involving the

Maxwell tensor of the relevant electrostatic field, and their validity does

not depend upon strong smoothness assumptions on the boundary of the domain.

However, when the boundary of the domain is sufficiently smooth, our interior

variational formulas yield by application of the divergence theorem the classical

Hadamard variational formulas, for which we thus obtain a strict derivation.

Our 3 -dimensional variational theory collapses easily by specialization to

the better known theory of variation in the plane.

Once in possession of a rigorous proof by the Hilbert method that we can

expand the varied domain functions in powers of F, we are Justified in

employing the perturbation method to calculate the second variations of

these functions. We do this in Chapter III and obtain interesting second

variation expressions for the capacity, virtual mass and eigenvalues corresponding

to various particular ways in which we can shift D. A number of convexity

theorems for these domain functionals are the outgrowth of this investigation.

For example, if we shift the surface of D along level surfaces of a harmonic

function U, the capacity of D with respect to a fixed interior point turns out
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to be a convex function of U. Similarly, the capacity of a convex domain D

is a convex function of a parameter which gives a variation of D defined in

terms of the support function of the surface of D. These convexity theorems

are applied to establish extremal properties of domains for which it is known

that the capacity is stationary under certain constrained variations, and thus

a number of uniqueness theorems are deduced, Such a theorem can be obtained also

for the problem due to Evans [ 5 1 of finding a surface of least capacity

enclosing a given curve.

In Chapter IV we specialize our variational theory to the case of two

independent variables in order to apply it to show the existence of vortex

sheets in axially symmetric, irrotational flow of an incompressible fluid.

An indication of these results will be given in the next section, where we

sketch heuristically an extremal characterization of vortex sheets in 3 -dimen-

sional space without symmetry of any kind. In the axially symmetric case, the

convexity of the virtual mass in dependence on the domain can also be used to

discuss the extremal characterization of a vortex sheet.

Chapter V is devoted to the study of the eigenfunctions and eigenvalues

of the vibrating membrane. Using the second variation, Ye show that under

certain conformal mappings of a domain depending on a suitable parameter, the

inverse square of the principal frequency of the domain becomes a convex

function of the parameter. This theoret. is applied to sho; that for fixed

principal frequency of a domain, the capacity with respect to an interior

point is a maximum when the domain is a circle about the point, a theorem due

to Polya and Szego [161.
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2. _grta sheets.

In order to motivate the detailed study of variational methods in 3-

dimensional space which follows in later chapters, we treat heuristically in

this section a 3 -dimensional extremal problem for the virtual mass of a

steady irrotational flow of an incompressible fluid whose solution yielcis

a flow past a vortex sheet. We have only succeeded in proving the existence

and uniqueness of vortex sheets from this extremal characterization in the

cases of plane and axially symmetric flow, but a formal discussion of the

general 3 -dimensional case, which is the one of interest in aerodynamic

theory, should indicate the direction in which further development of the

material in this paper should be pushed.

Let C be a simple closed curve in space and let 1: be a closed surface

which intersects every curve looped around C and bounds an infinite domain D.

Let - (Cx,y,z) be a harmonic function in D with the expansion

(a 2 2 2-... , r x+Y+z

near infinity and with en inner normal derivative which vanishes on

(1.2.2)

The function represents the velocity potential of a steady 3 -dimensional

flow past t of an incompressible fluid in D. The coefficient P( in (2.1)

is related to the kinetic energy of the flow and we shall call it the virtual

mass of 2 with respect to the x direction.

We show formally that if, for a fixed curve C, the surface 7 is so chosen

that

(1.2.3) minimum ,

then 77reduces to a vortex sheet enclosed by the curve 0.
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Let t be another surface spamed through C whose normal displacement

SVfrom Z measured from any point of t, is infinitesimally small. We

denote by D the infinite domain bounded by 21 we denote by ) the velocity

potential of the flow of the form (2.1) past , and we denote by P the

virtual mass of this flow. We attempt to estimate the difference GK -P

in terms of the normal shift 9.

If R denotes the surface of a large sphere enclosing g and 2*, we

find by Green's theorem that

(1.2.4) Gs = - - L-I*d7

since the integral is independent of the radius of the sphere R. Here d(T

denotes the surface element. A further application of Green's theorem yields

(1.2.5) 7z* I' Ldrv )d + sr~ v 17 t

D-D D

where dC is the volume element. From (2.5), it is clear that the first order

term & Q of the difference 0( - P, considered as a functional depending on $-.

is

(1.2.6) ~ S(Vp)4 Svad,

Let us now suppose that Z is an extrenal surface for the minimum problem

(2.3). Yle first conclude that 2: must reduce to a single sheet containing no

interior points, since according to (2.5) the virtual mass VZ decreases

monotonically as the flow region D expands. Secondly, we notice that (VT)2

must have identical values on both side3 of the extremal sheet Z-, since the

first variation (2.6) must vanish for every normal shift of the extremal surface,

and since a normal shift of the sheet Z corresponds to values of #V which
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differ in sign only on the opposite sides of Z. Thus in the extremal case,

(V T)2 is continuous across M, which implies by Bernoulli's law,

(1.2.7) 1 (vq) 2 + p const.

that the pressure distribution p is continuous through a. But the continuity

of the pressure p is precisely the physical condition which characterizes Z

as a vortex sheet. In space, the velocities on the two sides of a vortex

sheet are permitted to have, within the tangent plane of the sheet, quite

unrelated directions, but their magnitudes must be equal. In 3 -dimensional

aerodynamic theory, such sheets are introduced to account for the lift and

drag produced on an airfoil. We have succeeded here in connecting this

concept with the minimum energy principle (2.3).
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CHAPTER II

THE METHOD OF INTERIOR VARIATION

We want to develop in this chapter the theory of the variation for

Green's functions with respect to linear partial differential equations of

elliptic type under a variation of their domain of definition. For the sake

of simplicity we shall treat the case of three independent variables x

(i-1,2,3) which vary in a domain D0 of three-dimensional space. Let0

p(xi) be a continuously differentiable iunction in this basic domainD0

and consider the partial differential equation of elliptic type

(2oi.l) L[u] = V2 u- pu = 0 , 2  4? 2

Let D be a subdomain of D and let us assume, at first, that D has ao

smooth boundary C. We assume further that the only solution of (lol)

in D which vanishes on C is the trivial solution u=O. In this case, there

exists a Green's function of the domain D with respect to (1.1). This Green's

function G(F,Q) (with P =-xi, Q = is characterized by the following

three requirements:

a) For fixed QE D, G(P,Q) is a solution of (1.1) as a function of P

and twice continuously differentiable in D. except at the point Q.

b) The function G(P,Q)- -1- 7,Q is continuous in D, has uniformly
kiT- r(FAY

boiuded first derivatives with respect to P, except at P- Q, and its second

derivatives grow at most like r(F,Q)J1 if P approaches Q, where
3

(2.?.) r(P,Q) 2 = i .,)2

i=s o Q
c) G(P,Q) vanishes for PCC, QED.



It is well known that these requirementt determine the Green's function

in a unique way and that the Green's function satisfies the symmetry condition

(2n.3) G(P,Q) - G(Q,P)

Thus, in particular, Green's function is a solution of (1.1) in dependence on

the parameter point Q also.

If u(P) is an arbitrary solution of (1.1) in D and is continuous in D+C,

it can be expressed in terms of its boundary values on C by means of the

Green's function in the form

(2.14) u(P) IS dG(P.Q) u(Q)dCr ,
C Q

where VQ denotes the interior normal at the point Q with respect to the

surface C and where d- is the surface element at Q.
Q

We can also solve the inhomogeneous differential equation

(2.1.5) Vu-pu = f(xi) , u -o on C I

if f( x.) is Holder continuous in D+C. In fact, the solution u(P) can be1

represented in the form

(216) u(P) = -)JG(P,Q)f(Q)dtQ

where dTQ is the volume element at the point Q.

This result leads to an interesting interpretation of the quadratic form

(2o1 7) flf,fl 4f[fJ G(P,Q)f(P)f(Q)dt pd ItQ

D D

In fact, we obtain from (2.1.5) and (2.1.6) by means of Green's identity

(2.1.8) Fl[ff] 4j[(Vu)2 + pu2 ]dZ .

D

The right-hand side is just the Dirichlet integral of u rith respect to the

differentiaT equation (1.1). In the special case that p(x,) is non-negative
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in D, the Green's function G(P,Q) is the kernel of a positive-definite form.

This fact makes the theory of (L.i) particularly simple for the case of a

non-negative coefficient p(P).

2. Interior varims.

We consider a three times continuously differentiable vector field in D0~

(2.2.1) S = Si(x j ) i,j= ,2,3,

and the transformation

(2.2.2) x i = xi(x3 ;C) xi +ES i (x )

which depends on the real parameter £ . Given a proper subdomain D C D0 , we

may choose a bound b(D,D0 ) > 0 such that for 16< b(D,D 0 ) the domain D is

ma2ped topologically onto another proper subdomain D C D with smooth boundary0

surface C . At the same time, we can choose b(D,D ) so small that all domains0

D obtained still possess a Green's function G (P,Q) with respect to the differ-

ential equation (i.i). Our principal aim in this chapter is to express G*(P,Q)

in terms of the original Green's function G(P,Q) and the transformation vector

field (2.1).

For this purpose, we refer the function Ci (PQ) back to the original

domain D. Let P (P)zxi(x) Q*(Q)=- 'i(') and consider the function

(2.2°3) g(PQ; e) - GCP(P),Q(Q)]

which is well-defined i D, twice continuously differentiable except for P- Q,

and which vanishes if either argument point lies in the boundary surface C of D.
* *

Let u*(P) be an arbitrary solution of (i.I) in D and let

(2.2-4) u(P;e ) = u*(P*(P))

be the corresponding function in D. We have

(2.25) * ax
jX dx -A axl,2
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The function u*(P*) yields a stationary value to the Dirichlet integral

* 2 1 3 3[i 2 *2 * Er( 0 f)2+ 2 )(2o2.6) jjj £( )pu ]dV -J Jul (L7t -?x A pu~jo
DD i~xi* *

for all functions in D with same boundary values on C Here

(2.2.7) O(x ) - )

is the Jacobian of the transformation (2.2). Consequently, the function

u(P; e8) must satisfy the Euler-Lagrange equation for the right-hand integral

in (2.6). We introduce the notation9'Sr
(2.2.8) Aik =0 ) .- x. k*

(2.2.8') 9(x) - G(x1 )p(x) ,

and we obtain the following transformed differential equation for u(P;S,):
3

(2.2.9) Le(u] .A £. o
i,k- 1  1

This equation is satisfied, in particular, by g(P,Q; ') in dependence on P

for PED, P$Q.

The differential equation (2.2.9) wai obtained as the Euler-Lagrange

equation with respect to the Dirichlet integral

(2.2.10) Q [u] 5 5\ _L2 + 2]d UD i,k-l Sik  4a rxk l'

This integral reduces obviously to

(2.2.10') Q ou] =j[(Vu)2+ pu2dt

D

in the case E- 0; Q[u] will play an important role in the subsequent

considerations.
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The preceding transformation of (1i) into (2.9) permits us to consider

the Green's functions of varying domains with respect to the fixed differential

equation (i.i) also as the Green's functions of the fixed domain D with respect

to the varying differential equation (2.9). In this way, the dependence of

the Green's function on the parameter Z can be investigated in a more conven-

ient way; in particular, the general theory of linear integral equatiuns can

now be brought into play in an easier fashion.

3. ThQpSar.ADi§±±

We have to study the character of the singularity of g(PQ; a) if P moves

to Q. We refer the distance function r(P ,Q ) back to the domain D and find

(2.3.1) r(P*CP),Q* (Q)) ( (x )2)112

j=l 1i

+ O(r4 ) ]i1/2 r- r(P9Q)

with 3 * *

(2 3.2) a - X
j-l dxi dxk

By virtue of the continuous differentiability of G(P*,Q ) r(P*,Q *)-
4kT

and the character of the transformation (2.2), we can assert that

(2.3.3) g(P,Q;E) = 1 + h(PQ;E)
4 rr r(P* (P)Q (Q))

where h(P,Q; ) has continuous first derivatives in D.

The function - - r(P*,Q)- has for P near Q the same asymptotic behavior
4Tr

as g(PQ; E ) in the sense that the difference function h(P,Q; 6) is continuously

differentiable in D. It can even be shown that the second derivatives of

h(PqQ;Z.) become infinite at most like r(PQ) 1" if P approaches Q. We can
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construct another function of P and Q which is somewhat simpler and has the

same asymptotic behavior, In fact, the function

3
(2-3-4) S5PQ) -2t 

7  (ak('j )+ak(Xj))(Xii) (xk -k 1/

i,k-l

satisfies our requirements, as is immediately seen by series development near

the point Q.

We define now the parametrix functions s(PQ; a) with respect to the

differential equation (2.2.9) as follows:

a) The parametrix s(PQ;E-) is a symmetric function of both arguments.

b) We can write

(2.3-5) s(P,Q;z) = (PQ) +R (P9Q)

where R (P,Q) is twice continuously differentiable in D for P$ Q, has

uniformly bounded first derivatives for P Q, and has second derivatives

which become infinite at most like r(PQ)-1 for P--'Q.

c) The parametrix vanishes if, for fixed QED, the argument point P

lies on the boundary surface C.

The construction of such a parametrix can be performed in various ways.

The concept of the parametrix was introduced by Hilbert [l1, who applied

it to study the dependence of solutions of partial differential equations on

parameters which occur in the coefficients of the equation. While it may be

difficult to obtain a fundamental solution for a given differential equation,

the construction of a parametrix requires no comparable efforts, since only

the boundary condition and the singular character have to be observed.

4. The .]!tqgrij_ qu~tlonsf& g(PQ E).

Let Q [u,vl be the bilinear form belonging to the quadratic functional

(2,2.10). Let u and v be two functions which are twice continuously



differentiable in D+C. We have by Green's first identity

(2.4.1) Qj[u,vl - ivPa(Vsvu)dc- JjvLP[ u]d ,

C D

where 3

(2.4.2) Pe(-,v u) - I Aik
i,k1 i .Xk

and -, is the inner normal to C with components ii From this result

follows immediately Green's second identity

(2.4.3) j (vL[u[]- uLE[vl)dZ JS(vP(VV7u)- uP ,Vv))dr"

D C

We apply, at first, (2.4.1) to the two functions

(2-o44) u= g(P,Q; 6) , v g(P,R; e) , Q,ReD

We have to modify the identity in the usual way by eliminating from the domain

of integration small spheres around the points Q and R where the integrand is

singular. If we let the radii of the two safety spheres tend to zero, the

surface integral over the sphere around R will disappear, since v tends to

Lnfinity only like the reciprocal of its radius, while its surface area tends

to zero like the square of its radius. The contribution of the sphere around

Q is given by

3

(2o4.5) g(QR9;- o) A 1 () C I
U (LI aU)
U ak~ ik j)i Yk /

where dw is the surface element of the unit sphere U around the point Q.

From definitions (2.8) and (3.2) foLlows
3

(24.6) A, )a(
k- 1 c Ji~~
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There is no restriction of generality if we assume

3 3

(2.4.7) i,zlak(- J) ai ikk i " 1  1A i

that is, that the quadratic form is at Q on principal axes. It is well known

from the theory of the attraction of ellipsoids that

(2-4i8) 2 2(A3) 2 23 _ t

U [A 1 1 + A 2/2 + A 3 ]I/2 3 4(A+t)(A2+t)(At)

Hence, we obtain easily

-a IL )-1/2
(2.O.9 2~~j- - ~ A2 2  2 ~ 2 A 1 A'2 A )

Thus, we have

(2.4.10) 
-dw - Q( V

and the contribution of the sphere around Q becomes simply g(Q,R; 6 .0

We have further L2[u] -0 in D, whence we derive finally

(2-4°11) g(QR; F) - Q%[g(PQ; ),g(P,R; F0) I

In exactly the same way, we find

(2.4.11') g(Q,R ) Q og(P,Q e ),g(PR; F) ]

We define now the difference terms

(2o4.12) Aik = Aik(x; )- Ak(X; Fo)

C 9 E - - ( x )

and the corresponding bilinear form

(2.4o13) E (') [ 3 - .
i,kAl A i xk j
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Subtracting (4.11) from (411'), we then obtain

(2.4.14) g(QR; E ) - g(Q,R; Eo) 0 [g(P,Q; g),g(P,R;E0 )Sdt

This is an integro-differential equation for the Green's function g(Q,R;S)

in terms of the Green's function g(Q,R;Z Z0 ). It is very simple and symmetric,

but has the disadvantage that the coefficients of the integro-differential

equation are highly singular and thus this equation does not exhibit clearly

the continuous character of g in dependence on 8.

In order to overcome this difficulty, we apply now (4.3) with

(2.4-15) u - g(P,Q; F) , v - s(PR; E) , Q,ReD

where s is any admissible parametrix. We have ,o exclude again the singular

points Q and R by safety spheres and to pass then to the limit of vanishing

radius. As before, we find easily that thc contribution of the spheres around

Q and R are s(Q,R; -) and -g(R,Q; E), respectively. Using the fact that g is

a solution of (2.9) and is symmetric in its arguments, we thus obtain

(2 .16) g(QR; E)- s(Q,R; 8) -Ejjg(P,Q; S)LCEs(PR; )Jdt .

D

This equation is an integral equation of the second kind for g(,n; cj wn

an admissible kernel for the Fredholm theory. In fact, we may put

(2.4.17) LE[s(P,R; E )I - LE[s(PR; E )- g(P,R; E,)I

and by definition of the parametrix the second derivatives of s-g become

infinite of at most the same order as r(PR) - 1 if P-tR. However, we want

to transform the integral equation into such a form that it may be resolved by

a Neumann's series.

For this purpose, we apply (4.3) again with

(2.4.18) = g(P,Q; E ) , v = g(P,R; E - s(PR; Fo 0
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Observe that v has now bounded first derivatives in D, even near the point R.

Hence, there is no contribution from the safety sphere around R and we obtain,

since LC[u] 0,

(2.-4.19) g(Q,R; E)-s(Q,R; £) )  jILS[g(PR; )- s(PR; E)1g(P'Q;E9)dcp

D
Subtracting (4.19) from (4.16), we obtain

(24.20) g(Q,R;E)- g(QR;6o) = s(Q,R;Z)- s(Q,R;E) +,JJ' (P,R)g(PQ;)dVp

with (a,e )
(2.4.21) K 0 (PR) - L Eg(PR;E )]-LC [g(PR;io)]+L[s(P,R;E)-s(PR;so)1

Up to this point, no particular assumption was made concerning the dependence

of the parametrix upon the parameter 6 . We observe that the aik(xj;S) depend

analytically upon R and that we can assume without loss of generality that

the parametrix depends on 6 in a sufficiently smooth manner. Under this

assumption, the kernel K (6%E) is small of the order E- F, except near the

point R, where it becomes infinite. But we may write

(2,4.22) K ,E) (P,R) - LF[g(P,R;)s(PR;s) I+LF[s(P,R;) -g(P,R;&))

and in view of the characteristic property of the parametrix we may conclude

that K(E'6oUP,R) becomes infinite at most like r(P,R)-1 if P-->R. For

IF- a 0 small enough, the Neumann's series for the reciprocal kernel of

K ( E' O) will converge.

Let us put

(2.-4.23) t(QR;,e) g(Q,R; )+sQ,R 6)- sQ,R; FS )

We have

(2.4-24) K (Ec(QR) L, L -6b(Q,R; E, E9

and the integral equation

(2,4.25) g(Q.,R;) E Xj (Q,R;P-, E) +Lj[ '~PR;E,6E-)]g(PQ;E)dr'C
D

for the unknown g(QR;S) This integral equation is of the Fredholm type

and admits resolution by a Neumann's series.
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We might have chosen s(P,Q;Z ) to depend even analytically on 6. This

choice is of interest in the case that the coefficient p(xi ) of (1.i) depends

analytically on its variables. In fact, we can than assert that K(E 6o)

depends analytically on E and we have the following result; If p(xi ) is an

analytic function of the xi's, the Green~s function g(P,R; s) depends analytically

upon its parameter .

Under our more general assumptions, we can only assert that g(Q,R;S ) is

continuously differentiable with respect to F. For this purpose, we have to

assume only that the parametrix depends differentiably on S. We divide the

identity (4.20) by (6- ,,) and pass to the limit S- Foo We see immediately
o 0

that the partial derivative of g(Q,R; C ) with respect to the parameter , exists

and satisfies the equation

(2o4.26) R .2(.RA& s Z(Q.R :L j L[g(P,R;6 ) 3g(PQ; )d pa E D

+iL [a(P:R g(PQ; C Cdv

D
where

3

(2-4.27) 14fu] -X ?I U S~ 2 1 A

We see also from the integral equation (4.20) that the first partial

derivatives of g(QR; 6 ) depend continuously on E. Using this fact, we can

divide the identity (4.14) by (F- %) and pass to the limit Z E 0 ; we find

(24.28) E\R\ BE[g(P,Q @) g(P,R; E )drp

D

where E1[u,v] is the bilinear form

3 O(x ;

(2.14.29) E (u,vJ l' A1  Xi 4) uv
i~k F 9 ic x k X
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Formula (4Q28) is not only more symmetric than (4.26), but it has moreover, the

advantage of being independent of the choice of the parametrix. It is a typical

variational formula, expressing the change of the function with the parameter

in terms of the function itself and its partial derivatives with respect to its

arguments. The case 6- 0 is of particular interest for most applications and

will be considered in detail later on.

5. Some ineqpa~itia

We return to the integral equation (4.20) and observe that the resolution

by a Neumann's series leads to a development of g(PR;E ) in terms of increasing

order in (S- 9o). We obtain thus a numerically convenient formula for

determining the Green's functions of near-by domains with an arbitrary degree

of approximation.

We want to point out one feature of this development which leads to interesting

inequalities in an important special case. Iterating (4.25), we obtain

(2.5.1) g(QR;E ) = d(QR; E, ) +S5SLE[ (PR; E E ](PQ; C Fo)dlp0 E 0 0' O

D

L (P,R; E, $o)]L C(M, Q; S, Eoig(PM; F )dWCpd

D D

In the case that the coefficient p(x,) of the differential equation (1.1) is

non-negative, we observed in Section 1 that G(PM) is a positive-definite

kernel; by definition (2.3) the same is then true of g(PM; E). Hence, the

last double integral in (5.1) is non-negative and we are led to the inequality

+0L4 [ (P, R; e 5 6) (P, Q; E 0o)dp .

D

We can generalize this last inequality, as follows. Let QV be a set of N points

in D and Ay be N arbitrary real numbers. From the positive-definite character

of the kernel g(P,M; 6) and the identity (5.1), we can then derive the inequality
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N

(2.5.3) N [g(QiQk; (QiQk; F, o)]Ai k] L&[h hdC
i±k=l D

where
N

(25.3') h(P) = '(PQi; E, a ) A i
i-i

These inequalities become particularly simple if we choose the parametrix

s(P,Q; E.) in such a way that s(P,Q; E0 )= g(P,Q; E ). In fact, in this case

we have by definition (4q23)

(2.5.4) (Q,R; S., ) - s(Q,R; E)

The inequalities (5.2) and (5.3) are sharpsince we obtain equality if we

choose s(P,Q; £) - g(P,Q; C)

It is not difficult to derive these inequalities in a direct and elementary

way, but it should be observed that they are only one set of a great number of

estimates provided by the integral equation (4.20) in the case of a positive-

definite Green's function. For example, we can iterate (5.1) again and can

express g(Q,R; E) in terms of known quantities and a remainder integral

(2°5°5) L M LE (PR) IL[ I (M,Q) ILE (T,P) LL[y (SM) Jg(TS ; C )dd drSdvT

D D DD

which is again non-negative. Iterating the integral equation for g(Q,R; s-)

in this way, we can approximate the unknown function arbitrarily and with a

remainder term of non-negative value. Each approximation leads at the same

time to an inequality for the desired Green's function.

6. Variational formulas grad vriational tensors.

Thus far we considered the parameter 6 in the transformation (2.2) as a

sufficiently small but finite quantity3 We shall now obtain considerable

simp'ifications in our formulas if we treat t as an infinitesimal, that is,
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if we retain in all our formulas only terms which are of the first order, at

most, in S . The formulas thus obtained are indeed variational formulas, since

they determine the Green's functions of domains which are in an infinitesimal

neighborhood of the original domain D, belonging to S -0

We calculate at first the coefficients Aik(xJ; ) up to the first

order in E. Since .2!16 ) 8h + E 9
'a x i  ij Ox i

we have in the required degree of precision
3 ?s

(2.6.2) o(x ) I i - -L x o

and

(2.6.3) - x* - 3.
xjdxj

Hence, using definitions (2.8) and (2.81), we find

3 -as DS Sk
(2.6.4) A (x$) = i+ S K _xj ... - i  + o()

ik j k t8 k j -i ?xiarj S J xi

3
(2.6.-4) f E(x.; ) - p(xj) ) , S j (p3 )+o(S)

Now we are ready to derive an elegant variational formula from the

identity (4.14). We define the "variational tensor"

(2.6.59) T (P1;Q,R) 2aLa n dC.RoF+.g &Q. d4.s..
ik ax xxi a xk

- V g(,Q;o) • Vg(F,R;o) SP 1k

and using it, we put (4.14) in the form

(2.6.6) g(Q,R- E)- g(Q,Rvo) = E Tk(P;Q, R)--

xkD

3

kl (pS )g(PSQc-),(RS dt + o(C
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The variational tensor T ik(P;Q,R) will play a central role in the sequel0

It is based only on the original Green's function g(P,Q;o) and is to be

considered as known. The tensor is symmetric in its indices as well as in

its dependence on Q and R. For Q-R the tensor becomes a Maxwell tensor of

the type frequently used in electrostatics.

The trace of the tensor is
3

(2.6.7) T(F;QR) -2 T (P;QR) - Vpg(P,Q;o).Vpg(PR;o)
k- 1

We verify easily the following identitya
3

(2.6.8) E Tik(P;Q,R)Tjk(P;QR)

I T (P;Q' Q)Ti j (P;R,R) + T(P;RR)Tj (P;QQ)]

- T(P;Q,R)Tij (P;Q,R)+ ijT(P;QQ)T(P;RR) I

which reduces for Q- R to

(2.6.9) 1 Tik(P;QQ)Tak(P;QQ) Q)2
k-1

This shows the important fact that the rows and columns of the Maxwell tensor

Tik (PQQ) are orthogonal to each other.

So far we used only the formal structure of the variational tensor; now

we utilize the fact that the function g(P,Q;o) satisfies the differential

equation (1.1) in dependence on each variable. We find then easily

(2.6.10) - =p(x=) [g(PQ;o)g(PR;o)]k - I 9Xk i

This simple differential identity permits us to bring the variational

formula (6.6) into the simple form



23 -

(2.6o11) g(QR;ZF, g(QR;o)

S [Ti, p(P)g(PQ;o)g(PR;o) 3ik 3S i(P) )dp o + )

Dk-s 1 )X "1

We have thus expressed the first variation of g(QR) as an integral over

the domain D whose integrand is a divergence term. We assumed D to have a

smooth boundary surface C and may, therefore, transform this integral into a

surface integral over C. We make use of the fact that on C

(2.6.12) g(P,Q;o) = 0 , Vg(PQ;o) -2V I PC

We observe further that the components of the tensor T ik(P;Q,R) become

infinite for P- Q and P- R. Hence, we have to exclude these singularities

from the domain of integration by infinitesimal spheres and to take into

account their contributions. After an easy calculation, we find

(2.6.13) g(,R;j C)- g(Q,R;o) - jf[2(;' o(Qo) (E s-(Fd.
JJ V@p (s2) r

C

3
+ 71 r- 2a .2,.L S (Q) + ?(Ra S (R) ]+ o(EF)

k- ik k 0rk k

where S is the vector field with components S. and where the qk's and rk's

are the coordinates of Q and R, respectively.

It becomes now convenient to return to the original Green's function by

means of the correspondence (2.3). We denote by

(2.6.14) F S- V -V

the normal shift of C under the infinitesimal deformation (2.2) and obtain

up to higher order terms in S

(2.6.15) G(QR) = r2Q.pog) ? G(P9R
aVp z t-dc V-
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This elegant variational formula was derived by Hadamard [0i in the case of

Laplace's equation for any number of independent variables. The more complicated

formulas (6.6) and (6.11) have the advantage, however, of being valid also for

domains whose boundary surface C is no longer smooth. We shall discuss this

extension of the formulas in the next section. Hadamard's formula is frequently

used in variational considerations because of its great formal simplicity; it

leads often to a heuristic solution of extremum problems which must then be

£stablished precisely by a finer technique which can, in general, be based on

the formulas of interior variation of the type (6.6).

We have connected in this '--.tion Hadamard's variational formula with the

theory of the variation of the Green's function in a fixed domain under the

variation of a parameter in the coefficients of the equation. This latter

theory is essentially due to Hilbert; it provides a simple proof for the

Hadamard formula and permits an evaluation of the error term arising from

neglect of the higher order terms.

7. Extensionofthe variatinal formula.

It is obviously necessary to extend the variational formula (6.6) to the

most general domain D in space for which a Green~s function exists. In fact,

if we are dealing with extremum problems for domains D involving their Green's

functions, we will have to characterize the extremum domain by varying it and

comparing its Green's function with that of near-by domains. In this way, we

will bt; able to express analytically its extremum property in the form of

identities. But we are not sure, a priori, that the boundary surface C of the

extremum domain D is smooth; hence, we cannot apply the results of the preceding

section without getting rid of the assumption of smoothness on C. We will show

now in this section that the variational formula (4.14) holds in the most
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general case and that the formula (6.6) which has been derived from it in a

formal way is, consequently, always applicable.

Let D be an arbitrary domain in space which possesses a Green's function

G(P,Q) with respect to the differential equation (i.1). It is easy to see that

the deformations (2.2) carry D into a new domain D* which will also have a

Green's function G (P2Q) if £ is small enough. We can then define in D the

functions g(P,Q; Z) as we did in Section 2.

Let D be a sequence of domains with smooth boundary surfaces C whichn n

converge to D in such a way that Dn (Dn+ 1 CD. We denote by gn(P,Q;&) the

Green's function of Dn corresponding to g(P,Q;E-). We can define gn(P,Q;E)

as a piecewise smooth function in D by putting g n(PQ; z.)- 0 if either

argument point lies in D-D . Puttingn

(2.7.1) u - g(P, Q; s v - gn(P 9 R; -) , Q,ReD n

we can now obviously apply the first Green's identity (4.1), and taking notice

of the singularities of u and v, we find
(2..2) g (gR;E;) - QS Eg (P'Q; e ) gn (PR; C o)(2.7.2) gjQsR; e°) =

Now, we can pass to the limit n-co; because of the well-known continuity

property of the Green's function, we obtain

(2.7.3) g(QgR; sQ 0 Q[g(PQ; ) ,g(P,R; o)0

This is formula (4.11), valid now for the most general domains which have a

Green's function at all. In the same way, we can prove the analogous identity

(4.11') and the desired formula (414) follows again by subtraction of the

two identities. Thus, the variational formula (6.6) has been established in

the most general case.

It is to be observed that we are using here the term Green's function in

the generalized sez-se, namely, as the limit of the Green's functions (in the
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proper sense) of smoothly bounded exhausting subdomains0 In general, it

cannot be asserted that the generalized GreeL's function vanishes at all

points of the boundary C of D. But it is necessary to use this concept if

we want to establish a useful functional analysis with respect to the

differential equation (1.1).

8. Twj'J.peangnLeVsAbes.

Our preceding results are in no way restricted to the case of three

independent variables, but can be generalized to n variables if the nature of

the parametrix singularity is properly adapted. The case n-2 is of

particular interest, since the use of complex variables permits various

interesting simplifications in the formulas.

We start again with the differential equation
22

(2.8.1) L[u] - V 2 u- pu - o V2 _. 2
ax1i

and we call G(P,Q) the Green's function of (8.1) for a plane domain D if it

satisfies the three requirements

a) For fixed QED, G(P,Q) is a solution of (8.1) as a function of P.

b) G(PQ) +-I- log r(P,Q) is continuous in D, has uniformly bounded27T

first derivatives, except possibly at Q, and its second derivatives grow at

most like r(P,Q)-1 if P approaches Q.

c) G(P2Q) vanishes for PC, QED, where C is the boundary curve of D.

We introduce again infinitesimal deformations based on a vector field

S iCx) (i,j - 192) and we introduce Green's functions g(PQ; s) in the same
way as in Section 2. We obtain again the variational formula (6.6) with a

variational tensor (6.5); the only difference is that the indices i,k range

only over 1,2 instead of 1,2,3.
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There occur, however, as if by accident, remarkable relations in this

special case. We find

(2.8.2) T11 (P;QR) = 2aFhiio) - ?g(P.Q-.o) ?l~ g T2PQR)

Ox I  - x 2  9x 2  -d x2- T 2(P;QR)

2
(2.8.3) ; ) 32C tIJ (P°I) " k ia.RIo

We introduce the complex differential operators

(2.8.4) 0 -- (-.9- i -P-) , . =- - -. . + R- + z- Z X1z 2 Ox 1x2 Z 2 x i1'

and we write (vith P z)

28) T Re TTR(P;Q,R)

12 
.

For the sake of uniformity, we collect also the deformation vector field

S. x,) into one complex function

(2.8.6) F(z>I z) - S 1 Q(x * )) i S)2 (x

The points P,Q,R are replaced by their complex coordinates, z,

respectively( With these notationswe can cast (6.6) into the complex form

(2.8.7) T11 C,R s; g' Re.{~EQ2 [8{!a~l a 2 (PQ

T12~~ ~ I (P;,R z - 49i §Z{ao 9~T 1 QR

(2..6 ? z, 0gz o S2 +x )0i F x)
1 ~ ~ jz



-28-

We recognize that the variatiunal formula becomes particularly simple if

F-F(z) is an analytic function of the complex variable z. In this case

F - 0 and (8.7) reduces to

D

+o(F) •

If -we assume , in particular, p =-0, wie f ind S g(C§, r-0, which is the well-

known invariance of the Green's function of Laplace's equation under a conformal

mapping.

We can obtain from (8.7) a variational formula for the original Green's

function G(P,Q) connected with the fixed differential equation (8.1) and the.

varying domains D . Let G(P,Q) denote the Green's function of the original

domain and let

(2.8.9) 8G(PQ) - G (PQ)-G(P,Q) + o8)

denote the first variation of this Green's function, if the domain D is

transformed into D by a deformation (2.2). Then, we find easily from

(8.7) and Taylor's theorem

(2.8.10) EG(I ) Re{([8 S z

27

9. San9U _vq_ i194-thq- plara •

We saw in the preceding section that interior veriations based on an

analytic function F(z) lead to a particularly simple variational formula for

the Green's function. In the very important special case of the Laplace
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equation in the plane, which is closely related to the theory of analytic functions,

the simplification becomes even too great; since the Green's function is

invariant under conformal mapping in this case, we find only that the first

variation of g(P,Q;E ) is zero. In order to obtain a more applicable variational

theory of conformal mappings and univalent functions, it proves useful to

consider a slightly more general class of deformations. These deformations

are based on a complex fu ntion Xkzz) Whih is analytic in the domain D

considered, except in a small fixed circle inside of D. The same type of

variation is also of interest in the case of more general differential

equations, as will be seen from the applications in Chapter IV.

Let z be a fi-ed point in D and let K(E ,z0) denote the circle

Z- z . We aesume P so small that Kc--D and define

0 forzD- K

(2.9.1) F(zz)u 6 12 3 4
6 _Z I- z ° 2  I 4

z .z(6 2 8 + 3 - z  , for zfK

10 '1P P
By easy calculations it can be seen that this deformation field is twice

continuously differentiable in D; it yields a one-to-one mapping of D into

a schlicht near-by domain. Thus, our general theory of variations applies.

We insert (9.1) into (8.10) and find easily

(2.9.2) SG(~'r ) _ Re e~ 2- cr

-2F(fl, 1  3G~.? e e~FG z )G(z,) 'dz z
DI

Let us suppose that the argument points I and lie outside of the

circle K( F,z o ). Formula (9.2) represents then the first order change of the

Green's function with respect to D and for the differential equation (8.1),

if the boundary C of D is mapped by means of the analytic function
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(2.9.3) fCz) + j6 t 2 '
6z-*z00

which is univalent on C. B- this mapping, C is transformed into a new curve C

which bounds a new domain D and (9.2) gives the change of the Green's function

under this variation.

Variations of the type

(2-9.3') z -z+ 1 2
Z-z

0

have been used successfully in the theory of schlicht functions and are

called "interior variations" of the domain. The factor-1 which occurs in6
(9.3) is unessential and has only been introduced in order to permit a simple

continuation of the deformation into the critical circle K(,),z which

remains one-to-one inside this circle. We reformulate our result (9.2) in
*

the following way: Let (9.3') transform the domain D into D and map the

points and 9 into and . If GC§ ,r) is the Green's function of the

new domain D , we have

r 2 i d 2G(z, ) G(Z
(2.9.4) G (Re87z9z

-2go~eijO(J c(z., )G(,,q) z (-tZ( )- + o(P2)
PD 'az z-z0 I

This result is obviously of particular elegance in the case of the Laplace

equation (p--0O), but is also useful in the more general case. Its main

advantage lies in tho fact that no derivatives of the Green's function occur

under the integral sign.

10. i

We derived in Section 6 an interior variational formula for the Green's

funiction by using the identity (4.14) and the fact that g(PQ; F ) and its first

partial derivatives depend continuously on S. We can derive in the same way
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analogous formulas for various other important domain functions related to the

differential equation (1.1).

We define the Neumann's function N(P,Q) for a three-dimensional domain D

with respect to the differential equation (1.1) as usual:

a) ;(PQ) is, for fixed QED, a solution of (1.1) as a function of P.

b) It has in D and at Q the same differentiability properties as the

Green's function.

c) For fixed QeD and PE C, we have

(2.10.1) 0

Let us assume that for a given domain D such a Neumann's function does

exist. We introduce the infinitesimal deformations (2.2) and obtain near-by

domains D with Neumann's functions N*(P,Q), if 1UJ is small enough. Let us

define in analogy to (2.3) the functions

(2.102) n(P,Q; C)'- P* (P),Q* (Q)j

in the fixed domain D, and let us study their dependence on E. We observe

that n(P,Q; e) is symmetric in P and Q, in view of the well-known symmetry

of the Neumann's function; it satisfies in each variable the differential

equation (2.9), since N*(PQ) satisfies (1.1) in D*.

In order to establish the conditions which n(P,Q; e. ) fulfills on the
boundary surface C, we make the following observation. Let U (P*) be an

arbitrary solution of (1.1) in D which is continuously differentiable in
* * V*(* * *
D +C ; let VkP) be continuously differentiable in D +G . We define in D

the functions

(2.10.3) u(P) = u*[P )l , v(P) w, V*[P*(P)]

and find by (2.6) and (2.10)
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(2.10.4) QjIu,vldt I j V U*" V V* + pU V ]dT

D D

We use now Green's first identity on both sides of (10.4) and observe that

u satisfies in D the equation (2.9), while U satisfies in D equation (i.I).

Thus, we obtain

(2.10.5) vP, V uldm=dT

Since v(P) is arbitrary, we obtain from this relation the identity

(2.10.6) Pj[V,Vuldr .C9. d&-

which clarifies the meaning of the important linear functional P . We

obtain, in particular, the following boundary condition for the function

n(PQ; F ) :

(2.10.7) P [V, p(PQ; , )I - 0 , for P-C, QED

If we now apply (4.1) with respect to two functions

(2.10.8) u - n(PQ; C) , v = n(PR; E ) , Q,RSD ;

we obtain by the same calculations as were already performed in Section 4

(2.10.9) n(QR; ,o ) - Q [ n(P:Q; 6 ) ,n(PR; Eo) ]

Interchanging S with Fo and subtracting the resulting formula from (10.9),

we prove finally the identity
(2.10.10) n(Q,R; ) n(QR; So) - IEEa-E °

- = • 0 [n(P,Q;Eg),n(P;e )Jc%

D
We do not enter here into the detailed proof that n(Q,R; a) and its first

partial derivatives depend continuously upon the parameter 6. We proceed

immediately to derive from (I0.i0) in a formal way the variational formula

for N(Q,R)- n(QR;o). We define the variational tensor for the Neumann's

function to be
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(2a.101) T~ CkP;QR) - 21LCQ1.&l~2 gaa?2 aN(PJIxi  Xk  ?Xk  Xi

- V7(PQ) .VpN(PR) Sik

and we derive from (10.10) the result

3 OV as (r)
(2.10.12) n(QR; E )-N(QR) = , as

3- L -2- (pS )N(P.,Q)N(P,R dIIT + o ( F •

This is the fundamental interior variational formula for the Neumann's function,

which stands in complete analogy to formula (6.6).

The tensor Tik satisfies the same differential relation as the variational

tensor T k namely
3

(2.10.13) Tii - - i (P-QR) - p(P) --jx (N(P,Q)N(P,R))
k-i asXk k

thus, we may put (10.12) into the form
33

(2.10.14) n(QR; t)- N(QR) - e aOZ ( t [Tik- p(P)N(P,Q)N(PR) 8 ±kJ
eDkl ask i-lik i

• *i(P))dtC + o(9 )

Following through the same calculations as in Section 6, we obtain, by

iNintegration and use of the boundary condition - 0 on 0, the final formula

(2.10.15) SN(QR) u55 [VtpN(,Q) VN(P,R) + p(P)N(PQ)N(PR)3 pdgr1
C

This formula corresponds to the Hadamard variational formula (6.15) for the

Green's function and plays a similar role.

We want to remark finally that the reasoning of this section can easily

be extended to the so-called Robin's functions of a domain D with respect to

the differential equation (1.1). A Robin's function is defined like the
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Neumann's function and the Green's function; but instead of the boundary

conditions G- 0 or I - 0, we have for a given positive function i on C

(21016 8R(P.-R) C

(2.10.16) = r(P)R(PQ) for PEG, Qe.D

In order to carry out the preceding reasoning in the simplest way,

it is convenient to vary the coefficient f(P) together with the domain D

in such a way that the function

(2.10.17) r(PQ; S) = R [P (P),Q (Q)]

satisfies on the boundary surface C the condition

(2.10.18) Pj-[,Vpr(PQ; 6)] - v(P)r(PQ; F) .

In this case, it is easily seen that the identity (4.14) holds also for

r(P,Q; z). Hence we can obtain the same formalism as before. On the other

hand, it is not difficult to derive variational formulas for the Robin's function

of a fixed domain and a fixed differential equation, but with varying coefficient

L(P). In this way, the most general variational result may be obtained.

11. Thamnc Neumann's function.

The results of the preceding section are not immediately applicable to

the case of the Laplace equation

(2.11.1) 2u - 0

since in this case no finite domain possesses a Neumann's function in the

above sense.

It is customary to define the Neumann's function N(P,Q) in the harmonic

case by the following four requirements:

a) N(PQ) is harmonic for Pe D, except for a pole at Q.

b) N(P,Q)--L r(pQ)-l is harmonic at Q.
iT
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c) For PeC, QCD, N(P,Q) has a constant normal derivative.

d) We have the relation

(2.11.2) N )N(Pdc-p -0 , QED
C

The last condition is necessary if we want to ensure the symmetry of the

Neumann's function in dependence on its two argument points. We have by

Green's theorem the identity

(2.11.3) J N(P.Q) d -p- 1
dvp

and, since the Neumann's function has a constant normal derivative for fixed Q,

we can sharpen condition c) to the statement

(2.11.4) L9 N M )A(C)1  A(C) - surface area of C.

This result shows that the constant value of the normal derivative is

independent of Q and that for any two points Q and R

(2.11.5) jp [N(PQ)-N(PR)] -0 , PEC, Q,RCD

The function N(P;Q,R)= N(P,Q)-N(PR) is the nearest approach to the general

Neumann's function concept of the last section. It has only the inconvenience

that we need for its definition the normalization (11.2) for its components,

which cannot be extended to domains with more complicated boundary surfaces.

We introduce, therefore, the function

(2.11.6) N(P,W;Q,V) - N(P;QV)-N(W;QV)

- N(PQ) + N(W,V) - N(PV)- N(TQ)

= N(Q 9V;P,W) ,

which is symmetric in argument and parameter points and satisfies the following

four conditions:
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a) N(P,W;Q,V) is harmonic in P and W, except at Q and V.

b) N(PW;QV)--L tr(PQ)-'+r(WV) l - r(P,V)' 1 - r(W,Q- 1 1 is regular4tT

and harmonic at Q and V.

c) N(P,W;Q,V) has for fixed Q,VeD the normal derivative zero on the

boundary surface C.

d) N(PP;Q,V) = 0

It is easily seen that these four conditions determine N(P,W;Q,V) in a unique

way and may be taken as its definition. Most formulas of potential theory

become more elegant if this function is used. In the case of two independent

variables, the corresponding expression is closely related to the symmetric

integral of the third kind on a closed Riemann surface, obtained by completing

the domain D considered through addition of its double.

We might obviously define a function N(P,Wj;Q,V) by

(2.11.6,) N(P,W;Q,V) - N(P,Q) +N(W,V)- N(P,V)- N(W,Q)

also in the case of the general differential equation (1.1), although its

role is rather unimportant in this case. Let

(2.11.7) n(P,W;Q,V; P) s N(P*,W*;Q,V*)

be the corresponding solution of (2.9) obtained by referring the function N

of the varied domain D back to D. We introduce the function

(2.11.8) N(P;QR) - N(PQ)>.N(PR)

and the variational tensor

(2.11.9) Tk(P;RPW;QV) Tik(PR,Q) + Tk(PW,V) T(P;R,V)- TC(P;WQ)

2 A ik X kFWJ iki-xi N(P;R,W) -?- N(P;QgV) +--- N(P;RgW) ? N(;j

7 (P; RWY- 7N((P;Q;QV)
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We then deduce immediately from (10.12) the result

(2.11.10) n(RW;Q,V; , )- N(R,W;Q,V)

jT ,ik(PR;QV)--i - T - (PS k)N(P N(P;QV + o(.)

D ilk-1 e >-1 ?x )] ;RWNPQ V)JP oS

In this formula, we may pass to the limit p=O because of the existence

of a Neumann's function N(R,W;Q,V) in the case of the Laplace equation. we

then obtain

(2.11.11) n(R,W;Q,V; E )- N(R,W;Q,V) -
3 .) aJ  S i(P)d P (6

: Tik(P;RW;Q,V) D t o(
D i~k=l

This formula is the basic interior variational formula for the Neumann's

function of Laplace's equation. It may be extended to the most general

domains D for which the usual generalized Neumann's function exists.

We derived in this section the variational formula (11.11) by a limiting

process from the corresponding formula in the general case (1.1). It is

obvious that this procedure was only followed for the sake of brevity; one

may derive (11.11) directly by the preceding method without such limit

considerations.

We may derive from (11.11) and the equation

(2.11.12) t _ _ T ik(P;RW;QV) - 0

the Hadariard type variational formula

(2.11.13) SN(R,W;Q,V) VpN(P;RW) - '7N(P;Q,V) Svpd5p

It shculd be observed that for arbitrary TaD, we have

(2.11.3/) V91(P,T;R,W) - VpN(P;RW)

so that the formula (11.13) might as well be formulated in terms of the

symmetric Neumani's function N(F,T;R,W) alone.
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12. gapgvijy-any Xrtamass.

We shall now apply the results of the preceding sections in order to derive

variational formulas for some quantities of physical significance. We consider

the case of the Laplace equation and put

(2.12.1) G(P.Q) - _ [p_-y _ g-P,Q)[

Since - G(P,Q) is regular harmonic in the domain D and positive on its
4Trr

boundary surface 0, we have by the maximum principle

(2.12.2) g(PQ); ;o

The quantity

(2.12.-3) C(Q) = g(Q,Q)

is called the capacity constant of the domain D (or its boundary surface C)

with respect to the point Q. Its negative,-C(Q), is the potential at Q of the

charge distribution iihich is induced on the conducting surface C by a unit

charge placed at the point Q. We obtain from Hadamard's formula (6.15)

U2.N.) C0(Q) -=4rSSC G P.,92 >T8 d2/p
C

This formula shows the monotonic dependence of the capacity constant upon the

domain and can be used to obtain a clear insight into the dependence of C(Q)

on the boundary C. Of course, one can find also an expression for C(Q) in

terms of a domain integral involving the tensor T ik Since this formula Is

not very simple, we restrict ourselves to one important special case.

We suppose that the domain D is the exterior of a surface G. The formulas

o CSection 6 are also valid in this case. If Q lies near infinity, we may

develop the Green's function in terms of the coordinates qi of Q to obtain

G+P0 J2 f qj q 2(2.12.Q) + o( ) 2"p ., p ql
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Here, G(P) is a harmonic function of P in D except at infinity; it vanishes for

P E C. It is easily seen that G(P) has near infinity a development

(2.12.6) G(F) , - - - [I-= +__(. 0 (.L)]
4Tr rr 2

C(o) is called the capacity of the surface C. We may interpret G(P) as the

Green's function for a point charge at infinity; this notion can also be

justified by considering the transformation of G(P) under an inversion by

reciprocal radii.

We apply now Hadamard's formula (6.15) and derive by comparison of

coefficients near infinity the variation of G(P). We find

(2.12.7) 5G(P) -- -T O_.T) ,V. d OT

jj ; T SVT TC

and using (12.6) we arrive finally at [151

(2.12.8) C c( ) - 4Tr 0G T  V dK7T
T

Comparing (12.4) with (12.8), we recognize the close analogy between the

func tionals 0(Q) and C(co).

We can transform (12.8) by introducing the tensor

(2.12.9) Tik ' 2 G G .k - 'V G()2 , G-G(P)

Bx, axk i

We verify easily that

(2.12.9') T - 0 , i-l,2,3,

and we obtain the formula

(2.12.10) 8 0(O) - -4r E D i,k-1 Tik  a Z

for the variation of the capacity under a deformation (2.2). This result

could have been deduced directly from (6.6) and is applicable for more general

domains than is the case for (12.8)
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Let us specialize the deformation vector field and put

(2.12.11) S I = Xl I S2 -x2 S33= 0

this deformation leads to a stretching in the ratio (1+ l ):l perpendicular to

the x3-axis. We obtain from (12.10)

(2.12.12) SC(Co) -8srr (_--G)2 d,D 3

which proves that the capacity of each surface C increases under such a

stretching. This result is not obvious if the surface C is not convex, and it

cannot be read off from (12.8). This example shows the usefulness of trans-

forming variational formulas into different shapes; for certain types of

variational kinematics, monotonicity properties become obvious which are

otherwise hidden.

The above result can easily be extended to more general affine transforma-

tions. Let ((aik)) be amatrix such that
3 33

>' 2(2.12.13) ZL a i it ai
i,kJl i-=I i I

Then, the deformations based on the linear vector field
3

(2.12.13') Si 1,2,3,

will obviously lead to an increase of the capacity 0.

Let us study next the Netuann's function for the exterior D of a closed

surface C. In the case of such an infinite domain, it is possible to ask for

a Neumann's function with vanishing normal derivatives on C. By this require-

ment and the condition of regularity at infinity, N(P,Q) is uniquely determined

and can be shown to be symmetric in P and Q. It is to be expected that this

Neumann's function will have a much simpler variational behavior than the
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harmonic Neumann's functions of finite domains. Indeed, the formulas (10.12)

and (10.15) can now be applied immediately, just as in the case p-O. We have

(2.12.14) N(Q,R) = SJ (P9 Q)' VpN(PR) 8Vpd(-p

C
and

(2.12.15) E1o S S= Tik(P;QR) - k d'p

E D i,k-1 x d

For Q near infinity, we may develop N(PQ) as follows in terms of the

coordinates qi of Q:

(2.12.16) N (P, Q) -, + L (Pq O(p3) , z 2
4Tr P 31M P -1

Here the ci(P) are harmonic functions of P in D except at infinity; they

possess near infinity a development
3

(2.12.17) Tji(P) - xi + r-3 J_ i kxk +O0 W - 3 )

k-i

and satisfy on the boundary C of D the conditions

(2.12.18) aQVCr) , SC

The function ?i(P) may be interpreted as the velocity potential of an

irrotational incompressible fluid flow in the region Dibounded by the rigid

wall C, which has at infinity unit velocity in the direction xi. The coeffi-

cient matrix (((Xik)) can be shown to represent a tensor; it is customary in

hydrodynamics to consider the tensor £191
(2.12.19) Wik - 4 1Tcik k V ,

where V is the volume enclosed by C. We call ((w ik)) the tensor of virtual

mass of the surface C; it plays an important role in the hydromechanics of

the surfece C moving in an infinite incompressible fluid.
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We derive from (12.14) and (12.16) by a comparison of coefficients of

-39qp the variational formula for the velocity potentials

(2.12.20) 5,R S C
qi (P) elocPiR)ty penial

C

and, analogously, we obtain from this formula and (12.17) by a further

comparison of coefficients

(2.12 .21) &Xik - _4_1# Ti5Vc1.? pvdr-,
C

These results could also have been derived, of course, from (12.15).

We would have found, at first, the variations of (i and the 0 ik expressed

as integrals over D and have deduced (12.20) and (12.21) by integration by

parts. Since the variational formulas involving domain integrals have an

interest in themselves, we want to give at least the variational formula

for the tensor (12.19) of the virtual mass. We define

(2.12 .22) t(±k - C-&l(9

which is for fixed i,k a symmetric tensor in and m. It is easily verified

that its divergence vanishes,

(2.12.23) 57 1 m o

Consider now a variation (2.2), but assume that the functions S i(P) vanish at
--a e d

infinity at least like r3; in this case the integrals of , , extended
r,

over the infinite domain D, converge. Under such a variation, we may replace

(12.21) by
8Crr tA- i k)

(2.12.24+) ScX t J 19 t ) 11 dVD I ,mml Im OiM
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We find similarly for the variation of the volume V

(2..;.25) - TS , - d

and consequently, by definition (12.19),

(2.12.26) (Wik S tm + -ik S )a
D ctm k) m

This formula is of value in the case of extremum problems involving the

virtual mass if it is not sure a priori that the boundary surface C of the

extremal domain D is regular enough so that the variational formula (12.21)

applies. Since extremum problems of this type play an important role in the

theory of discontinuity surfaces in fluid dynamics, the interest of the
above formula is obvious.

If we study the development (12.5) of the Green's function near infinity

in more detail, we are led to a series
3

(2.12.27) o(PR) - G + .L 13(P)q+OC- 3)
/0 4-T-f -

where the 'i (P) are harmonic functions for Pe D, except at infinity. There,

they have a development

(2.12.28) h (F} x + r- 3 > 8ik O(r - 3 )
i r 8 it-) (k I

and they vanish on the boundary surface C. They form the electrostatic

counterpart to the velocity potentials i(P) derived above and a completely

dual variational theory can be given for them. This theory was developed in

the Hadamard notation in [191 and can be readily transformed into the domain

integral form involving variational tensors.
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13. An extremum pro blemr.vh6 tL. m .

We shall now apply (12.24) to a modification of the extremum problem in

potential theory discussed in Section 2 of Chapter I and shall illustrate

thereby the value of interior variational formulas in such extremum questions.

We consider a closed surface C which bounds a finite body B and which iso 0

homotopic to a torus. We shall seek another surface C1 spanned through B- 0

so that the surface o+C 1 has an exterior without irreducible closed curves,

and such that the coefficient 9K cl1 connected with the virtual mass of

Co+C1 is a minimum. We are not able to discuss here the existence of an

extremal surface, but we shall concentrate on the necessary conditions for

such a minimum.

We define a deformation vector field S i(P) as follows. We choose a

point X not on C and describe around X a sphere KP(X) of radius 9P; we
suppose p so small that K does not intersect the surface C . We determine

next a function H(P) which is twice continuously differentiable in the entire

space, has the constant value 1 in the sphere K jX) and vanishes outside of

the sphere Kp. Let Q be an arbitrary, but fixed, point in K.2' not on C1;

we then introduce the deformation vector field

(2.13.1) Si(P) - 8 1  H(P) , r=PQ , Jfixed

This field has a singularity at the point Q, but it is easily seen that the

variational formula (12.24) still holds, although the integrals involved arc

now improper. The variation (2.2) based on the vector field (13.1) will
.

transform the surface C o+C into a new surface C 0+C 1 which is a competing

surface with respect to our extremum problem. Hence, its corresponding

functional Q cannot be less than the QA of the surface C +C1, whatever the

sign of the parameter S may be. Hence, we find by (12.24)
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3 9S; I dC 0 , tt, I

(2.13.2) tm dtx tim t

D
and by (13.1) 3

(2.13o3) ) L tim m  H(P)jd 0

Dm

Because of the definition of H(P), the last integral is only to be extended

over the intersection of the extremiuf domain D with the sphere K around the

fixed point X. If QCK , as assumed, we may put (13.3) into the form

(2.13.4) --t-m " -- -) V )
m-1 K m PQm=±1P/2

where (P) is a harmonic function of Q in K Clearly, also

(2.13.5) ZS5 tjm --- (-i-L) dtp, -9I(Q) PQ l.2)3)

represents a harmonic function of Q in K Suppose now that the sphere K

intersects the surface Cl; by our construction, the function j(Q) is regular

harmonic inside K12 even as the argument point Q moves across C1. If Q lies

away from C0Cl, it is clear that j(Q) is regular harmonic, since the

divergence of tim vanishes identically in D. Thus, we have proved the following

theorem: A necessary extremum condition in our problem is that the integral

sums (13.5) be regular harmonic functions of Q outside of the given body B0

We may consider this condition as a set of three singular integral equations

for the variational tensor tjmO We should expect intuitively that the surface

C1 is a sheet spanned through the torus Be such that CO+- 1 encloses the same

volume as did C alone. This follows from the monotonic dependence of (X upon0

the domain. If we suppose, moreover, that C1 is a smooth surface, we recognize

easily that the extremum conditions on the functions j(Q) mean exactly that

(cp)2 is continuous across the sheet C1, as was indicated in Chapter I,
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Section 2. Thus, (13.5) is an essential intermediate result formulating the

decisive extremum condition before the smoothness of the extremum surface is

ensured.

It is quite instructive to study the plane problem which corresponds to

the above question. We give two closed curves C and C in the plane and
0 0

want to connect theig by a curve C such that the exterior D of C +Co+C
1 ool

has a minimum virtual mass, say in the x1-direction. It is easily seen that

the preceding reasoning leads to the extremum condition
2

(2.13.6) > jtjm c log tp = j(Q)
rn-i D m PQ

where (Q) is regular harmonic in the common exterior D of C and C0" and
j0 0 0

(2.13.7) t = 2aP i17? 2
xj 'x m -

NI(P) being the velocity potential in the direction of the xl-axis for D.

In order to solve the set of integral equations (13.6), we differentiate

this equation with respect to % and use the well-known formulas for the

interchange of differentiation and integration in the improper integrals of

potential theory. We obtain

(2.13.8) - 2Tt 2 (log +-)atpa h Sf -Y m aXSX~ PQ

Observe now that, by definition (13.7), we have

(2.13.9) t11 + t22 ' 0 , t12 t2

Using further the fact that V 2 log L = 0, we then find

(2.13.10) ac( 1 PQ l -

+ - = -Tr(t +t ) -2
Sq 2 q 12 2112
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Thus we succeed in the plane case to get rid of the improper integral terms by

considering a proper combination of derivatives of the harmonic functions

1 (Q). The new formulas make it evident that the tensor components tik are

harmonic functions in the original given domain D0

The formulas can be simplified still more by the use of complex

notation. We define the complex-valued function

(2.13.11) F(z,z) -r (P) + i (p)

Then, the two equations (13.10) can be united to yield

(2.13.12) - ) -Tr(t 11 it1 2) -- 4(- 1  2Oz @z

using the complex operators (8.4). Since F(z,z) is a harmonic function and

satisfies 32

k2.13-13) F = 0
$z Sz

we conclude that is independent of z and hence is an analytic function of

z in D 0 Hence, finally, we obtain from (13.12) the extremum condition that

(2o13.14) (P ) = (Z)

is a regular analytic function of z in D

The same method applies to many extremum problems of potential theory in

the plane, and this fact explains the easy application of interior variations

to such problems. The analogy aid the difference between the treatment in the

plane and in space becomes obvious. The same accident which permits conformal

mapping and analytic functions to play a role in the potential theory of the

plane is also responsible for the simple results of the variational technique

in this case.
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CHAPTER III

THEORY OF THE SECOND VARIATION

1. aelitie.

The method of interior variations based on a deformation field (2.2.2)

enables us to calculate also higher order variations of Green's functions in

a simple way0 In fact, it is easily seen that no can obtain from the basic

identity (2.4.14) as many derivatives of g(QR; c.) with respect to the
n

parameter S as the coefficient p(xi) in (2.1.i) has Holder continuous partial

derivatives with respect to the variables xi.

We shall deal in this chapter with the theory of the second variation of

the Green's function and derive an elegant expression for it. The significance

of this result for the treatment of extremum problems and for the general theory

of the domain dependence of the Green's function is obvious. In this section,

we prepare the way by establishing some useful identities which have an interest

in themselves.

We start from the identity in

(3.1.1) Le[g(Q,R; e ) a - o

differentiate it with respect to & and put 6- 0. We obtain

(3.12) LE a I(Q.R: - O I M -L'[g(QR;o)J

where L is the differential operator dehined in (2.1.1) and L -L' is defined
0

by (2.4.27) and has, in view of (2.6.4), the form

3as as
(3.1.3) L' u OIZ zL9 -ik A O ) S

i,k=1 ; .i axl x k

3

- -LL (ps
j = 1 a x
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This rather complicated expression simplifies considerably if u is a solution

of (2.1.1). In this case, we have
3

(3.1.4) L'[ul = -L[T -u S I

Since G(Q,R)sg(Q,R;o) is a solution of (2.1.1), we derive from (3.1.2)

the representation

(3.1.5) R: =0 E ) . >l P R S k ( Q) + 2 R S k ( R ) I + H ( Q ' R )q k + r'

aF C.=o k =1 'aq k adrk k

where H1(QR) is a symmetric function of both argument points which satisfies

in dependence on each the partial differential equation (2.1.1). It can easily

be seen that H(QR) is continuously differentiable even for Q-R, so that the

first right-hand term in (1.5) contains the singularity of at the point

QR.

Since g(Q,R;) 0 in e for QCC, RED, we have also

(3.1.6) , for QEC RD

and hence 3

(3.17) H(QR) = - s q- 1 3 k(Q) , for QeC, RCDk"1 q k

Since H is a solution of (2.1.1), we can express this function in terms of

its boundary values (1.7) by means of the Green's function and find

(3.1.8) H(QR) S2rqP2R i ( SmiX)d(-I,, ? •/ 9V

Comparing this result with (2.6.15), we recognize the significance rf the

regular function H(Q,R). It represents, up to the factor C , the first

variation of the Green's function G(Q,R) under variation of the domain.

This function will play an important role in the~variational theory.
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2. Thbe__q~n gia .

We consider the formula (2.4.28), which holds identically in 6, and

differentiate this identity with respect to the parameter. Since the singularity

of the function is well known by formula (1.5 it is easy to establish the

validity of this process. We have to assume, however, that p(x i ) is twice

Holder continuously differentiable with respect to all its variables, sinco

these second order derivatives will occur in our formulas. After differen-

tiation, we put & - 0 and obtain

(Q,.1 R ,,_cI -- G(PB)Jdtp
g2 1 D 8E -0

G E'GP,Q), 3g(P2R; C) Id Vp'- fJ E"[G(P,Q),G (PR)dY

D 96 
D

Here, we put E' E 1 and define E' by (2o4,29); analogously, we define
0

3 2 a2p (x.;)
(3.2.2) Etu,v]- A (x x -

i~~la 2  ik J 2x Sx+u
ik1a,'ak a

and put E" -Et
0

Consider the expression %CPQ) $6 and the identity
-CoIs)der th

(3.2.3) EL[A(PQ),G(P,R)Id~p 3-. (R,Q) -SrIM-T 3 1 rD
-SES /(PQ)'L' G(?,RfldzCp

D

which follows from Green's identity and the fact that 7PQ) vanishes on the

boundary C of D. By virtue of (1.2), we may write this identity also in the

form 3

(31.2.4) ME/ Y( ) P )l #'..R9Q) ~ '
D 

j.r

+ Jj' %(Pc)L [%(F9 R)IdUD



- 51 -

Using again Green's identity and the singularity term of 7L given by (1.5),
we obtain finally

(3.2.5) Ifj E'[%L(,Q),G(P9 R)1dV = --Qo[%(PQ), (PR)]
D

where Q is the bilinear form belonging to the Dirichlet integral (2.2.101).0

The second term on the right side of (2.1) can be treated in the same

way, and we obtain therefore finally

(3.2.6) & . . & - 2Q [ 1 g(P3R6 I
dB 2  1 F0 0 

0

o DS E"[G(PQ),G(P,R) Idc p

D

This important formula permits an easy determination of the second variation

of the Green's function.

For the sake of completeness, iwe bx,, here also the expressions for the
terms A and 2

t s 2 Aik a 2 P These expressions are obtained by straight-

forward computation from the definitions (2.2.8) and (2.2.81). We find

2 A 2 e 0 3 0 I t

95 (S2 ) a(S sS (s2,s)

jl xj ax. ik

a ex >(x, 2  2+

3 a s a sS + 9+ S j s

i(j.L - x j 2 8x xj j

2 1 j

We observe next the particular structuie of the function g(QR; C ) as

defined by (2.2.3). We have the series development
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3 ..

(3.2.8) g(Q,R;C =G*(Q,R) + ( -S (Q)+ G_ S (R))+% 90i qi 9ri +

where G is the Green's function of the domain D obtained from D by the

deformation (2.2.2). Suppose now that we change the vector field Si(x)

arbitrarily in D, but keep it unchanged on the boundary C and at the two
.

points Q and R. Under such a change, D would remRin invariant, and hence

G (QR) would be unaffected. In view of (3.2.8), we would also find g(Q,R;S)

preserved under this change of the deformation. Hence, we conclude that

g(Q,R;Z ) depends only on the values of Si on C and at the points Q,R. The

same holds also for . Thus, we know a priori that we can trans-

form the volume integrals in (2.6) into surface integrals extended over the

boundary C; under the process of integration by parts, the singular points

Q and R will yield certain residua which will lead to the special dependence

of the left-hand term on these two points. It is possible, in fact, to obtain

such a formula by starting from (2.3). In view of the complicated structure

of the expressions (2.7) and (2.71) this procedure is, however, rather involved;

we proceed, therefore, in a different way.

We assume, at first, that the boundary C of D is sufficiently often

differentiable and that the vector field S is chosen in such a way that it

has at every point of the boundary C the direction of the outward normal. Then,

the original domain D will lie in the deformed domain D and the Green's

function G*(PQ) of D* will be a solution of (2.1.1) everywhere in D, except

at the point P-Q. For P C, we have the condition± .~Q(.* G Q - * 
(P,Q) ,

(3.2.9) G (PP,Q) -G (PQQ) Pi P)

,2 3 2*

2 SItSk\(p)o 2) = 0
ik-1 OPi & Pk
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Hence, the function

(3.2.10) Q(PQ) -- G* (PQ)- G(PQ)

is a regular solution of (2.1.1) in D with the boundary values
3 2 3 2*

(3.2.9') -3 ap i( Si(P) s j >* G - P) gpk S (P)S (P)+o(c )
± - p q- ap1 C9P~ k

for PeC.

Therefore, we may represent C(P,Q) by means of the Green's function

G(P,Q) and the above boundary values. Since Si has the exterior normal

direction, we find

(3.2.11) Q(QR) + aG*( ) SG(P.R)

2 f df I4(p)j2 aG(P 0 R) da-po( &2)

We simplify this result by use of the function H(QR), defined in Section 1.

Observe that Is! -- (S- V) and hence by (1.8) and (1.7)

(3.212) CI(Q,R) P eH(QR)+61 S (PQ) H(P,R)dG"

e- il 2 oGrLo) aoG(rR) (S V')2d ~ o£2)
C/ P

Since Q(Q,R) is, up to higher order terms in e, replaceable by &H(Q,R), we

may write finally

(3.2.13) G*(QR)- G(QR) - 6H(Q,R)- 2Q [H(PQ),H(PR)]

_6 2 f 02 G(p.Q) J _R-A- (S. V)2 dq-+o( e2)

2 Sf V2  2P
C P

Thus, we have proved under the above restricting assumptions the formula
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(3.2.14) S2G(Q,R) - -2 62Q [H(P,Q),H(P,R)- 3V 2 V (S -V)

In the last integral, we may replace -22 by lower derivatives if we use

the fact that G(PQ) satisfies the differential equation (2.1.1) and vanishes

identically on C, If Ai and 02 denote the principal radii of curvature at

the point P, it is easily checked that in view of (2.1.1)

(3.2.15) _02Fg) (_. + (.L) q

Hence, we arrive finally at the result

(3.2.16) 2 G(QR) - -26 2 Q [H(P,Q),H(P,R)]0

_e25§ 9Gt(Q) ._G(PR (_1-._2 S ?G(P Q) O (P. + 1 ) (S.V)2 do-p
S P2 )ar

We want next to rid ourselves of the assumption that the deformation

vector field Si has everywhere normal direction with respect to the boundary C.

Let us suppose that only the assumption (-S)< 0 is fulfilled on C. It is

easy to determine the normal shift A on C which is necessary in order to
.

transform this surface into the surface C induced by the deformation (2.2.2).

In fact, let x i(u,v) be a parametric representation of the surface C and let

-i,(u,v) be the components of the unit vector on C in the direction of the

interior normal. We want to represent the point xi of C in terms of a

normally displaced point x i(u+ &U,v+ 6 V) on C. Thus, we have for a suitable
)k * *

function X of u -u +  U and v =v+EV the condition
"dxi

(3.2.17) x (u, v) + 8Si(u,v) s xi(uv) + 8"-:u U+- V)
2 iu 0 v

2 2
2 S w c -9 a v

t'-i''' +9v)j og
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Multiply this equation with V 1 (uv) and sum over i. Since V i is orthogonal
ax ;9x ?)V ?I

to the tangential vectors - ' L:1 _u ' -v we obtain
?U v v'a du '9 ,woti

(3.2.18) A(u*$v*) Sv) (V U2 ONU J'+7V 2 )+ o(e)2

where Mfl,71 are the coefficients of the second fundamental form of C. We

deduce from (2.17) by comparison of the tangential components

(3.2.19) UE+VF = (S- +o(1) , UF+VG - (S- 2 +

where E,F,G are the components of the first fundamental form. Thus, U and V

can be expressed linearly in terms of S and geometric quantities of C, up to

higher order terms in E. We obtain finally

(3.2.20) X(u,v) - (s -V)- s [u a(s- V) + V -9 (sav

_ U u2 + 2 +' v 2 1 + o( e)
2

We write for short

(3.2.20') A(u,v) - (S.2V)- Is[SI+o(e) ,
as

where §[S] is a simple expression of second order in S and which depends

on the geometry of the surface C.

Consider non the expression

(3.2.21) G (Q,R) - G(QR)+ 8 G(Q,R) + 3 2 G(Q,R)+o(C2)

We have in formulas (2.6.15) and (2.16) simple expressions for the first and

second variation if a normal shift $s - . (S Z/) is made. Inserting the value

(2.20') into these formulas and collecting the terms of order 52, we obtain

finally

(3.2.22) 8 2G(Q,R) = -2 e2Q (H(P,Q),H(IR)]
0

2F SG(P9 Q OG(!' 1 ~j I __ S 2
0 L -r[ I ( -l- )(S. d) a S]1 O "

C P Sz4 Lf f
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This variational result has been derived under the assumption that

(S-Zv)--0 and that the surface C is sufficiently smooth. We know, however,

from our general considerations that a formula of this type can be obtained by

integration by parts of the expression (2.6). We used the later reasoning only

in order to save laborious calculations and to arrive easily at the final result

of these transformations. Hence, formula (2.22) must hold for an arbitrary

deformation vector field Si and for all surfaces C which possess continuous

curvature and a continuous second normal derivative of the Green's function.

In particular, the elegant formula

(3.2.16') 82G(Q,R) = -2Q £G(P,Q), SG(PR)I

DG(P.Q) G(PR) (___+ __)6 2 dC7

C

holds for all such surfaces under a normal shift S V-.

3. Thae-rizati -n.

We calculated in the preceding section the second variation of the Green's

function of a domain D under a deformation of the particular type (2.2.2). It

is necessary to adapt this variational formula to various problems arising in

the applications. For example, we may have a family of closed surfaces t

which depend on a parameter t; they enclose domains Dt with corresponding Green's

functions Gt (QqR). It is necessary to find simple expressions for the first and

second derivatives of Gt with respect to the parameter t. These expressions are

obtained from our variational formulas by elementary transformations.

Let us suppose that two surfaces C and C1 are given such that C1 encloses

C entirely, and let V(P) be a twice continuously differentiable function in0

the domain bounded by 01 and C. We assune, moreover, that IS7VI9O in this

region and that the function V(P) has on C and C1 the boundary values 0 and 1,
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respectively. Consider now the level surface Ot, defined as the locus

(3.3.-1) v(P) = t , FECt  .

These surfaces have no self-intersection and they determine a one-parameter

family of finite domains Dt which depend monotonically upon the parameter t.

Let G t(QR) be the corresponding Green's function; our problem is to determine

the derivatives of Gt with respect to the parameter t.

Let P be a point of Ct and compute the normal shift 8V which is necessary

in order to place P on the level surface Ct+At. We clearly have the condition
)22

(3.3.2) SV S 21  - V ) 2+ " 6
9V' 2 (8v 9V**2

whence

(3.3.2') By- (-- 5 1 Zat - (-2---)(.22Lf3 5t2 + o(&t 2
:9 V2 v2 '?7-Vdv

Therefore, we derive from (2.6.15) and (2.16') the identities
Ot G  (P )2G (P91R) tId-

(3.3.3) G (QR) = 4 G:(pQ =kR (-a(p-- , dcrp

t
and

(3.34)G - -2Q 2G ) G (PR)]
t2 Gt(QiR) C- (PQ) t Gt

tv 2ott t ?t ii

9 G (PQ 9 Gt(P, R) -(___)JJ (,1' 22I- f +tl J .

C/

We observe now that Ct is a level surface for the function V(P). Hence, we

have the well-known identity
(3.3.5) V =__ _1) 1 2 V

aa - f/ 22 - -

and we may write
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(33.4') 0e Gt (Q R ) - -2Q G (P ,Q ), 0 G (P R)1
t2  0 t t t t

9G (PQ) 'aG (P n) V)3 2
+ ~L..... (d()f V2 V0)dc-p

C t  dV P 9 p 9

The preceding formulas are part! utry interesting in the case of a posi-

tive coefficient p(xi) in the differential equation (2.1.1). In this casa, we
90G

know that the Green's function is positive in the domain D and that - is
t at'V

positive on C Moreover, it is clear that - is negative on evch level

surface C Hence, we see that the Green's functions Gt (Q,R) increase

monotonically with t by virtue of (3.3), a fact which follows also easily

from the minimum principle valid for the Grein's function. Let us suppose

further that the runction V(P) is subharmonic, i.e.,

(3.3.6) V 2 V :0: ,

between C and C1. We can then assert that the surface integral in (3O4')

is negative and we have the estimate

(3.3.7) 2 t(QR) t --2Q t Gt (P,R), Gt(,)
at o

Equality will hold in (3.7) in the case of a harmonic function V(P).

In order to draw conclusions from (3.7), we introduce an arbitrary

fundamental singularity S(Q,R) for the differential equation (2.1.1) which

is defined in the larger domain D bounded by C,. Thus, the functions
1 ±

(3.3.8) ht(QR) = Gt(QR-S(Q R)

will be regular solutions of (2.1.1) throughout Dt. We might choose, in

particular, S G. Clearly, we have

2 Qt 2
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Consider now the quadratic form
N

(3.3.10) PI tQ%. d. A

based on N arbitrary numbers A and N points Qp inside Do. We conclude

from (3-.9) and the fact that Q 0ul 7 0 for p(x i ) 0

(3.3.11) At 0
9t2

which shows the concave dependence of the quadratic form At upon the

parameter t.

This result gives an important and useful insight into the dependence

of the Green's function upon the domain D. Consider, for example, the case

of Laplace's equation. Here, a fundamental singularity is readily available,

namely

(3.3.12) S(QR) L4"rr

We have

(3.3.23) ht(QQ) - . 1 (Q)

where C t(Q) is the capacity constant of the domain D with respect to the

point Q, as defined in Section 12 of Chapter II. We may therefore state that

in the case of a subharmonic function V(P) the capacity constant C t(Q) is a

monotonic and convex function of the parameter t.

Let us return to the case p(x.) ' 0. In this case it is well known [1, 21

that there exists a kernel function K t(PQ) for the domain Dt and the

differential equation (2.1.1) which has the reproducing property

(3.3.14) u(Q) - QoKt (P,Q),u(P)1

for every regular solution U(P) of (2.1.1) in D The Dirichlet integral

Q is, of course, to be taken over the domain Dt. We have by the Schwarz
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inequality and the reproducing property of the kernel the inequality

(3.3.15) u(Q) 2 t Qou.Kt(QQ)

Observe now that 2 G (PA) is a regular solution of (2.1.1) in Dt, so thatat t

the above inequality can be applied to it. Thus, we deduce from (3.9) the

result 2h t (QQ) 1h (Q,Q)

(3.3.16) -e- h2 , (Q- )d [K 2 Mat2 2
(3.3z63 a )[Kt(QQ)1

We may define [K t(QQ)f I 1 by virtue of (3.15) as the minimum value of

the Dirichlet integral Q [u] for all solutions u(P) of (2.1.1) in D which0 0 t

have at Q the value I. Hence, this functional increases monotonically with Dt.

Thus, (3.16) implies

a 2 i 1(QQ) ?h (Q, 2(33.17) -- -- -2(-:- . 2 [Ko(QQ)] -1

at2  dt 0

an inequality involving only the kernel function of the initial domain D 0

Analogous estimates can be obtained, of course, for the more general

expressions (3.10).

It is possible to extend the preceding reasoning to the case of Laplace's

equation. In particular, if we consider the exterior D of a closed surface C,

we can introduce the kernel function

(3.3.18) K(P,Q) - N(PQ)- G(PQ) m n(P,Q)+ g(P,Q)

where

(3.3.19) N(PQ) -Q + n(P,Q) G(PQ)

are the Neumann's and the Green's functions of D.

Let C0 be a closed surface including C1 and let V(P) be subharmonic in the

domain betw-een the two surfaces. We assume again that itJ# O, and that

V(P)-0 on C and V(P)-i on C1 . Let Dt be the exterior of the level surfaceO
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V t and let 0t be the corresponding Green's function. We find in analogy to

(3.9) the inequality

(3.3.20) ?> 8rQ[ G (F)1
Ot 2  0 t at(t

for the capacity 't of the domain DV where G t(P) is the Green's function of

D with the singularity at infinity. Since -a Gt(P) is regular harmonict at t

in Dt , we have

(3.3.21) - Gt(Q) - Qo[Kt(PQ) G Gt(P)]

with K the kernel function of Dt and, hence, by the Schwarz inequality

tt t 0(3..22 [ GtQ)2 [tQ,) ot G(P)]

Combining (3.20) and (3.22), we find

(3-3.23) G [ tt(Q) ]2K IQQl- 12

for arbitrary QED t . Let now Q--oo; it can be shown that (19 ,p. 1391

(3.3.24) lir (Q,2)

Q ->a) t 47

while obviously

(3.3.25) lim r 0t t /(co)

Hence, we find o2o ( C)

(3.3.26) do 2C)

at 2  t t - t
or

(3.3.27) 2 -
St t

Thus the reciprocal of the capacity varies as a concave function under

a level surface variation with a subharrmonic function V(P). This result shows

the significance and usefulness of the variational formula (3.4X).
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We can use (3.27) in discussing various extremum problems. Let, for

example, C be a closed surface which encloses a fixed point Q. Define the

functional

(3.3.28) r(C) - C(Q)'C(0)

which is dimensionless, i.e., remains unchanged under a similarity transfor-

mation of the surface C.

We call a smooth surface C stationary with respect to the functional rr

if we have 8-M = 0 undor infinitesimal deformations Sv of C. By the Hadamard

formulas (2.12.4) and (2.12.8) this condition has the form

(33.29) C(Q) 2 a G(PQ) - C(a) 2 .. G(P),
v a+

for every Pe C, wihere V_ and 2V' denote the interior and exterior normals

of C, respectively.

If C is a sphere of radius R around Q, we have

(3.3-30) G(PQ = -(p -1 ) G(P)s (l (E)
4-Tr R 4Tr R;

hence

(3o3.31) C(Q) 2 a G(PQ) C (a) 2 _2 G(P)
a-' 4TTRR 3 / 2  0 V +

Thus, the sphere is a stationary surface with respect to the functional T.

We want nor to show that it is the only possible one.

Suppose, indeed, there were another surface C1 with this property. We

take C0 to be a sphere inside C1 with sufficiontly small radius and we

consider the level surfaces C t(0'--t-_l) of the harmonic function V(P) which

is zero on Co and 1 on C1 . Let

(3.3.32) Tt - T(ct ) = t(Q)'Ct

We have

(3,33) TT - Ct( c) ) + C (C)t(Q)
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(3.3°34) T "C (co)Ct(Q)+2C'()C t(Q)+C"('co)Ct(
t t t t t t t

Whenever -Tr- vanishes, we can write
t

(3I3T35) -T C" (Q) + C"()) - C ()2," rf- + t - 0- ) 1
Gttto

in view of the convex dependence of Ct(Q) on t and by (3.26), we find

(3.3.-36) T' , i f T' =0
5 t

We have to consider the case of equality in (3.36). Clearly, this is

only possible if C"(Q)- 0, and by virtue of (3.7) this is only possible if
t

(3.337)t G (P,Q) - const., for P inside C
at t t

By (3.3), this is only the case if we have on C the equality

(3.383) .E- G (PQ) O Pe 6 P
'1V t P Vt

with a suitable constant factor of. The surface Ct is an analytic surface,

and by the Cauchy-Kowalewski uniqueness theorem for solutions of partial

differential equations with given initial data, we obtain

(3.3.39) Gt(FQ) - [V(P)- t]

The sphere C appears as a level surface of Gt (P,Q) and hence, obviously, all

level surfaces Ct are spheres around the point Q. Hence the fInal surface C1

will be a sphere around Q and we have the original type of stationary surface

with respect to T.

If C1 is not a sphere with Q as center, we have the inequality
'I

(3.3o4O) Tt 1 o , if TT' - o
t t

This result shows that ITt can only cross from negative values to positive

values as t increases. Since T-= O, we recognize that iT remains positive
0 t

for t -0, and ITaI  0 is impossible. Thus, there cannot be a stationary

surface other than a sphere around Q .
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Since r; i whnn we passed 1rom C to C we see that IT has its

--.Cnlimum value for this spf ° 'aC and

(3 .3 .4', G( )(

with equality hnlding only in the cabe of a sphere aroyund Q

We observe hov the convexity of the nqpa.city leads to the inequality

(3.3.41), a uniqueness thncrem for the functio27. ,quationf (3.29) and the

monotonicity of Trt at the sai,.c time.

All. methods applied in the preceding -ections can be carried over wi-2out

any change to the case of a partial differentiaJ ccfuatlon (2,8.1) in two

independent variablos. We devote to this case a spectal section only for the

reason that some formulas simplify eonaiderably and lend uhemselves to

interesting applicatlono.

Let again

(3.4.1) H(QR) - ( I/) dn
IC

denote the solution of the original differential equation wlhich ij, up to the

factor 6, the first variation of the Green's function for the displacement

vector field S. (i- 1,2). If S has the normal direction on Lh_, boundary

curve C of the plane domain D and if K (s) denotes the curvature of C at the

point P(s), we have in analo,y to (2.16)

(3.4.2) 8 2G(Q,R) -2 C 2 Q [H(PQ),H(PR)]

.g2~ [ k,(s)(S'U)(2 da

C

We want to extend this formuld to the case when S i is not normal to C;

it Is at this stage that the tw,oodlmensionai theory becomes simpler, in view
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of the simpler differential geometry. We decompose the displacement vector

Si into normal and tangential components Ni and Ti.

(3.4.3) S *- N + (s.-) 4  [s1: + (s.V,)V.

and we let N and T be the projections of the vector Si on the normal and

tangential vectors, respectively'. Starting again from the condition

(3 -4.t&) ()+ a Si (x) x (s* ) + C A (s*) vi (s*)

we derive by Frenet's formulas the relation

(3°4.5) £(N Ti)= Kis){(s*~s ~ -A)c* B(345)( +T( s - S) - a (s*) (s* -s)

/(s) )f (s* s)2+ E AFs*§j +o( 2)

Thus, we find

(3.4.6) s - sC T+oCS )

22

and ft 'mlly

(3.4.8) A(s) -- N- S [T d 4 2+ (
da 2

This is the equivadent normal displacement cf C under the general deforma-

tion (4.3).

Becaune of the correction in the normal shift, the first order variet'.On

leads to a correction term in the second variation and we find

22 nrR
kU.4.9) 2G(QR) = -2 & Q (9,Q,

0

2_ 2 -d-- - T2Id.

CP

This formula gives the second variation of the Green's funcc .in under an

arbitrary displacement wtth a vector tieLd $..
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Formula (4.9) enables us to study the variation of the Green's function

with the parameter of a one-parameter family of curves. Let, for example, Ct

be a family of closed curves given by the complex parametric representation

(3o4.10) z = f(c-;t) , 2S ttl, 0 -- l ,

which expresses for fixed t the points of the curve Ct in dependence on the

parameter (7. We assume the function f to be periodic in T with period 1

and to have two continuous derivatives in each variable.

Each curve Ct defines a finite domain Dt and a corresponding Green's

function G(z, 4;t). We consider the curve Ct  and the shift
0(3.4.11) f(-;t)- f(Qr;t) = ft(C;t )(t- t )+2 ft(-;t)(t-to)2 +

which carries points from Ct  into points of Ct . We may express the unit
0

tangent vector at the point z((T;t ) in the form

(3.4o12) e f c= if( t)

and decompose ft into tangential and normal components,

(3.4.12') ft(C;t o )(t - t) = Te i-+ Nie i

vith

(3o4.12") T n Reft (-;t)e-iC ( t) , N = Imft(;t )e-i J(t- t0)

Using (3.4.9) and observing the additional correction from the first variation

due to the term If (Tt )t- t )2 in the displacement, we find
2 tt ' o' o

(3.4-13) 02G(z.& ;t) ,, _2Q [~~~)Hw t

-a2

a Cw dv - t- i
C
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This formula becomes particularly interesting in the case of convex curves,

for which the curvature i is always positive. Let C and C1 be any two convex

curves enclosing the origin. We suppose them described analytically by the

values p0( ), pl( )) of the supporting functions in dependence on the angle

of inclination T of the normal. We introduce then the family of convex curves

Ct by defining their supporting functions as follows:

.. 14) t ) _ (!- t)P( ) tp ( T) 0_t- l

In order to describe this family in the complex form (4.10), we observe that a

tangent to Ct whose normal has the angle of inclination T is given by Hesse's
normal form

(3.-4.15) x cos + +y sin c pt()

and that Ct is the envelope of this family of straight lines. Hence, the

points of Ct are found by eliminating q from (4.15) and

(3o4.16) -x sin P +y cos 9 - Pt(f)

Thus, we find easily

(3.4.17) f(T;t) ei91pt( )+ ipt(q))

(l- t)(T ;o) + tf(f ;l)

We calculate

(3.4.18) f 1e!'?[Pt(T) + P (P)

.19
and verify that e = -ae and

(3o4o19) Im Qt e'§

Moreover, we have clearly

(34.2 .0) %PT ;) 0
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Thus, (4Q13) simplifies to

(3.4.21) *LG( r ) 2Q [H(w,z;t),r1Nw, ;t)j

- dG(wz~tl 2~ ;t) R~~ kIfr(rn1) _f(CpO)12 ds)
-a o

Formula (4.21) is very useful in the case that the coefficient p(x i ) of the

differential equation is non-negative. In this case, we can again assert that

0u] is nonnegative and that9V is non-negative. Let S(z,%) be a funda-

mental singularity of the differential equation considered; then

(3.4.22) h(z, it) G(z;t)-Sz,')

is a regular solution of the differential equation in Dt. Reasoning as in

Section 3, we can assert that the expression
N

(3.4.23) At >1,1 h(z -z;t) A tAc 7

is a concave function of the parameter t.

This general result contains numerous special cases and leads to various

inequalities. It implies, in particular, that the capacity of a convex family

(4.14) at a given point with respect to Laplace's equation is a convex function

of the parameter t of the family. We do not enter here into a discussion of

the various results and their possible generalizations.

5., S in glu__yjar Xatlp__ thpgQ do.

In Section 9 of Chapter II, we derived from the general formula for first

order variations of the Green~s function of a domain D in the complex z-plane

a particular result for the defortation

(3-52) Z 2
Z

0

This formula has in the ease of Laplace's equation the simple form
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* * *, <8/o2 in80(zo, )3G(zo")

(3-5.2) G ( , G( ReG( y, q) 2 Re 4 T e~ Sz O

00 -+ o 2o(jo)

Since this result has been derived from the formula (2.8.7), it is valid for

the most general plane domains and can be applied to extremum problems for the

Green's function in order to characterize the bxtremal domin. One obtains

in many cases, from the extremum requirement and the variational formula,

necessary conditions for the extremum domain in the form of a differential

equation for its Green's function. One can then show easily that the required

extremum domain has a piecewise analytic boundary curve C; one can even find in

many cases domains D which satisfy all necessary conditions imposed by the

study of the first order variation. But the question arises to show that there

exists only one unique domain satisfying the necessary conditions. It is natural

to study the theory of the second variation in order to obtain such uniqueness

results.

We want to derive in this section a theory of the second variation of the

harmonic Green's function under interior variations of the type (5.1). Since

we cannot use the principle of superposition of variations when studying

second order terms, we shall start immediately with a variation
N

(3-5.3) z =z+e , A%/ V- 1... IN

We suppose that no z. lies on the boundary C of the original domain D; if E

is small enough, the mapping (5.3) will carry C into a curve C in a one-to-
* *

one manner, and let D be the interior of C . We denote by G (, q ) the

Green's function of the varied domain.

We assue that C is an analytic curve; by our preceding remarks it is

clear that this case will be the most important one in the applications. ',ore-

over, because of the continuous dependenc e of the Green'- function on the
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dcmain, our final result can be extended to the most general domains through

approximation by analytically bounded ones. We shall follow the same method

used in Section 2 for the general case, but shall utilize fully the advantages

of complex notation.

Since D and D have analytic boundaries, we can choose F so small that

both Green's functions G and G are analytic in the closure of D D

Writing z z + , Z(z), we have by Taylor's theorem

03654) o Gc( +Ez(9 , ) -G( , ) +2 Re eZ(4)
E __2 z( )2  2% ( G * j-nI 0( s 31
2 a 2

for 4E C. Hence, the function

(365.5)_/_ , )- * , -G

is regular harmonic in the closure of D and has for 6 C the boundary values
* 22

(3o5.4') -2 Re E Z( ) + -2 z )2  a2 a 2 +o(C3

Using the Green's function G( ., q) of D and the identity

(3. 5.6) 2G(z. flds Z 2 & L dz
an z

we obtain

( C 2 2(3.5.7) nA(~,r) =Rj 5[8Z(7,) +k Z(z) 2 d0(.

" 2Pa , dzj+ o(C3)

Put now

(3-5.7:) A&4,2  -A_(~ r?4 jI yrr (E: 3 )

We firnd at once

(25.8) A IQ 7) Re 3(z) " dzj
C "j
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(3.5.9) At 2( ',q) =RefS [2Z(z) z + , z) dz2  dZI
C

We can evaluate the integrals by means of the residue theorem. We find,

first, N SDG(zvt? dQ(z,,)/

(3.5.10) .A(,r~=ReV8Th Wiq G

This result is equivalent to (5.2) and could have been obtained 
from this

formula by the principle of superposition of first order variations.

In order to calculate the second variation term , 9), it is useful

to introduce the two kernels

(3-5-11), 1) -4 C
and

(3.5.12) L( ,q)--4 a2G( .r) 2. - (
a aq , T m(q q)2

which play an important role in the theory of conformal mapping and 
orthogonal

function systems in the domain D [ 1. The kernels K(C, 5 r) and 2( , ') are

regular analytic functions of their arguments throughout the domain 
D.

In order to simplify the result, let us suppose that the parameters Xp

in (5.3) have been chosen in such a way that

(3.5.13) z(4 ) - z( I ) - 0

i.e., so that the argument points considered are fixed under the variation.

With these notations and assumptions, we calculate easily
NI ~ 2- Gz ')(z,z)

(3.5.14) A 2 ( , ) Re 6r2 a q )
2 "r ,j

N 
'dGzzpfjj SGzz Fo

pa , l= 1 Yt z : zv ) V 3

+ - -- > x_ _ 9_ L Iz -y
Vn- -1V (z- zV) 2 ( az zJA V z
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In this formula for the second interior variation of the Green's function,

certain bilinear forms appear which are well known in the general theory of

conformal mapping. The forms

(3-5.15) L I(zFZ,) x;, V- S K(z ,zV1x,

satisfy, for example, the inequality

(35l15') ,I !!S .K,

a result which leads to various convexity statements with respect to functionals

connected with the Green's function.

We do not intend to make applications of the above formulas in the

present paper. Our main purpose in presenting the results is to show the

uniform character of the various methods applied in the variational calculus.

6. The_..rparjion method.

In this section, we want to give analternate method for the derivation of

second order variational formulas and apply this method to the Neumann's

function.

We deal again with a three-dimensional domain D and the partial differential
.

equation (2.1.1). Let D be another domain and suppose that the intersection

D 2=Do D is a domain. Let N(PQ) and N*(PQ) denote the Neumann's functions

of the domains D and D , respectively. We -onLiinue the definition of these

functions beyond their domain by putting them equal to zero if an argument point

lies outside of this domain. We suppose that both domains are smoothly bounded.

Let Q and R be two points in the intersection D2 and let %[u,vl denote the

bilinear Dirichlet integral for the differential equation (2.1.1) extended

over the domain D. It is then easy to verify the identity

(3,6.1) N*(Q,R)- N(QR) = QD+D.[N (PQ)-N(PgQ),N (P,R)- N(PR)
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which is a consequence of Green's theorem. Exactly the same identity, but

with opposite signs, is also true if the Neumann's functions are replaced by

the corresponding Green's functions.
.

Let us suppose now that the domains D and D are very near to each other

and that their boundary surfaces lie in an , neighborhood of each other. In

this case, in each closed subdomain of the intersection D2 we have a uniform

estimate

(3.6.2) N (PQ)-N(P,Q) .0()

Hence, the contribution of D2 to the above Dirichlet integral is only of the
2

order E . The first order terms of the Dirichlet integral are due to the

difference shells and lead to the equation

(3.6.3) N*(Q,R)-N(Q,R) [VN(P,Q)o V N (P ,R ) + p (P )N (P ,Q )N (P ,R ) ] P dq-P + o ( -)

C

which is Hadamard's variational formula (2.10.15).

If we want to evaluate the identity (6.1) to a higher order of precision

in C , we have to utilize the following result. Let C be a sufficiently smooth

surface and F, a thin shell over C with variable width Sy. Let f(P) be a

twice continuously differentiable function in the closure ofp; then we have

the estimate

(3.6.4) SSCf(P)d C = £Cf(FM-Vd C (dc- O(SV 2)2 jj y22d/02

where P and e2 are again the principal radii of curvature at the point P

of integration. Applying this general formula to estimate (6.1), we find

eas I1.1y

(36.5) 82 N(Q,R) = 2Q[ SN(P,Q)S $',R) j 4
C

+-&r N(PQ)N(PR). ("L+ L)VN(P.)' VN(F,R) r(PQ)N(PR)- 2drp.
/01j & 2
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It is worth while to consider in more detail the term - (VN(P,Q)VN(P,R)).

Let r(u,v) denote the vector varying on the surface C and put

(3,6.6) VN(P,Q) = V(P,R) -

This representation is possible, since 7N has no normal component on 0. We

can write 3

(3.6.7) L V(P,Q) VN(P,R) I O1 . 9 x,i'k-l xi  xk  xk  i

2
0 2 N( P N(PQ)+ 3x Sak L Vi

i '9---I' Xk

where I is the normal vector to C,

(3.6.8) 1 = ( xv) = r

Me start now from the identity
3

(3.6.9) 21 2N = 0

and we obtain by differentiation

(3.6.10) ± ?ON Ou
ik-l R xk O 1xj Iu

and an analogous equation with v replacing u. Thus, using (6.6), we can write

3 .3 i +E ~ ITA( aN(P,fl)N(3.6.11) ?xi 9xk 'x k  Vi j Mxi ax v

It is well. known that the relations

(3.6.12) Z~ iu' - -' r, -v IV -iVi

hold, when %-,)_' denote again the coefficientc of the second fundamental

form. Thus, we can put
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(3.6,13) 0,rvN(Q)47N(PR)1 2[VQl/+ A($8f)+?3
rC

Thus, the normal derivative of the scalar product between two Neumann's functions

equals the scalar product itself, mul-inled by the ratio of the second and the

first bilinear fundamental forms. It is remarkable that his expression involves

only first order derivatives of the Neumann's functions.

We want to formulate our result for the particular case of Laplace's

equation. We find

(3.6.14) 62 N(Q,R) - 2QD[SN(FQ),&N(P,R)1

+ £VN(PQ)- VN(PR)2 ~N(P,Q),VN(PR}+ 2 (9dL]zar

Here, (x1 ,x2) denotes the ratio of the second and the first fundamental forms

for any two given tangential vectors y and v2 . This result can only be

applied in the case that the domain D considered is the exterior of a closed

surface C, since only in this case can the existence of a Neumann's function

in the proper sense ce assumed.

We proceeded in this section in a rather formal way, without specifying

the exact assumptions under which the above estimates can be justified. It is,

however, sufficiont to point out such a formal method which works at least in

the case of analytic surfaces C; for, we know by our general theory of variation

fields that a formula of the type (6.5) for the second variation of the Neumann's

function must exist and can be obtained by integration by parts of the interior

variational formula. The method of the present section serves only to give a

short cut to the fine] result without too much labor.
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Next, let %!(P) denote the velocity potential for an incompressible and

irrotational fluid flow around a surface C which has at infinity unit velocity

in the direction of the x -axis. This function has been discussed in Section

12 of Chapter II, and its first order variation was determined there. Let

0 11denote the corresponding coefficient defined by (2.12.17), which is

closely related to the virtual mass of C with respect to the direction X1.

Let D be the exterior of C and let C be another closed surface with exterior D

such that D2 DD is not empty. If 0<l and denote the corresponding

quantities for the new domain, we find

(3.6.15) 0(l l- 0( Q1* T

where Q is the Dirichlet integral for Laplacs's equation. This formula is

analogous to (6.1) and can be derived also by application of Green's identity.

It is also to be understood here that and Tl are defined to be zero out-

side of their domains of definition.

Evaluating (6.15) the same way as we evaluated (6.1), we find

(3.6.16) 6l _

which is already given in (2.12.21), and

(3.6.17) 1 s2 D I T. VI )2 c1 21)(7?)t&

Finally, we want to give the expression for the second variation of (A11

in the case of an axially symmetric surface C, under the assumption that the

variation E/ is also performed in an axially symmetric way. Let xy be the

coordinates in the meridian plane and let y--0 be the axis of symmetry. We

denote the ieridian curve of C in this plane by c. If K is the curvature

of c at a point (x,y), we 'have
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(3.6.18) -- - 2 = ( < +P1  2 y i, '2

for the corresponding points P on C, since the domain D considered lies out-

side of C. Using the fact that because of the axial symmetry the velocity

vector V T, lies always in the meridian plane, we calculate easily by the

method of this section that

(3.6.19) -1? (V P )2  -2 K(V TJ)2

Hence, we have

(3.6.20) &2 ..1 2K _

Consider finally the case where C is a rotationally symmetric vortex

sheet. In this case, (,7p1)2 will have equal values on the upper and the

lower side of the sheet. The curvatures of C will have to be taken with

opposite signs on the upper and lower side, however, so that in this case

formula (6.20) reduces to

(3.6.21) 2 = 2 D Pl' >0

Since, by its very definition, the vortex sheet satisfies the condition

S0<11 = 0, we recognize that it represents a local minimum for the coeffi-

cient

We shall give another formula (4.3.1) for the second variation of the

virtual mass of a body of rotation. The stream function W will enter

instead of the velocity potential 1l used in (6.20). Both formulas are,

of course, equivalent, but (4.3.1) is better adapted to the uniqueness question

treated in Section 3 of Chapter IV.
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CHAPTER IV

AXIALLY SYMMETRIC VORTEX SHEETS

1. Variational _formulations.Lf tproble§.

As an application of the methods of Chapter II and as a first step in

the solution of the problem of 3 -dimensional vortex sheets discussed in

Chapter I, we formulate and solve a minimuma problem which gives a construction

for vortex sheets in axially symmetric steady irrotational flow of an incom-

pressible fluid.
Let B denote a compact connected set in the half-plane y 30 which

intersects the x -axis, let b denote a point in the infinite exterior compo-

nent oP B relative to y ) 0 and let W be a continuum in the half-plane y O

which, together withthe x-axis, joinsb to B in the sense that the x -axis and

B+W+b form a connected set. We denote by D the infinite region complementary

to B+W+b in the half-plane y >O and we consider an axially symmetric flow

parallel to the x -axis in the 3 -dimensional region obtained by revolving D

about the x -axis. This flow is governed by a velocity potential T and a

stream function Y which are functions of x and y only and satisfy the

generalized Cauchy--Riemann equations

*xN/Y V

in D and the boundary conditions

(4-1.2) YQ

on the curves C bounding D. We normalize t at infinity to have the behavior

2 2
(4.1.3) x- _ 9(v- + 2 x2

2 r3 ". r -x- Y

and vie call V the virtual mass of the flow0
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We consider B and b to be fixed, and we attempt to choose the variable

continuum W, so that

(4.1.4) G minimum

We shall prove that a unique extremal continuum TI for (1.4) exists, is an

analytic curve connecting b with B or with the x-axis, and generates a surface

of revolution about the x-axis characterized as a vortex sheet for the flow Y.

As a preliminary, we point out that only a bounded class of continua W

need be considered for the extremal problem (4.1.4). For if W rises to a

height h above the x-axis, we can show by symmetrization of B4W+b in the

y-axis, which decreases o(, that the virtual mass PC of B+-W+b is larger than

the virtual mass £(h) of the flow past a disc of radius h perpendicular to

the x-axis [7, 91. Since £((h)---co as h-aco, there is no loss of generality

in requiring that B+W+b lie in a suitable high strip O yGH. Suppose now

that W is a curve lying within a very large strip xI : I, but in no smaller

vertical strip. Let * be the stream function of the flow of the type (1.3)

in the exterior of the rectangle Ix TEI, OQ! _yi- H in the upper half-plane;

and let 9 be a solution of (1.1), defined in one of the two rectangles

obtained from x)!___I, Oi---yi- H by drawing a vertical line through b, which

has a suitable large positive value on this line and which vanishes on the

remainder of the boundary of the rectangle. If W touches the lines fxj - I

at a point z in the half-plane y> 0 near z let Y denote the branch of

which is defined outside the rectangle I xl __.I, 0-I5 yi___H, and let 4- be the

branch of P defined on the other side of W. Then '*. Y* and Y" *

near z0, by the maximum principle for (1.1). Hence at zo, for large I,

(4.1.5) >2_>a
0" Va
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since as I-; co we have P -O and O near z. But Hadamard's formula

(2)2%
(4.!.6) =V - j y

can be applied to show that because of this inequality, a shift of the curve
@

'1 inward, defined by bringing t v. ertc lines xT cnlnsr together and

by replacing arcs of W beyond these lines by vertical segments, will diminish Of.

Indeed, C( can be diminished thus until I is so small that

(4.1.7) no '2AL...

and hence we obtain bounds on the height and width of competing continua W.

We shall find it more convenient to replace in D the stream function

by the positive solution

(4.1.8) = Y

of the self-adjoint partial differential equation

(4.1.9) V2 u - (3/4y2 )u

From a minimal sequence of domains D for (I.4) whose virtual massn

coefficienbs v n approach their greatest lower bound, we find that we can

select a subsequence, again denoted by Dn, which converges in the sense of

Caratheodory [3] to a limit domain D. The corresponding functions un form

an equtcontinuous family in each closed subdomain of D, whence by suitable

extraction of a further subsequence we can achieve that un tend to a limit

solution u of (1.9). Each un is positive in D and hence is subharmonic there,n n

by (1.9). Thus if we. let U be a harmonic function, defined in the region D
n n

obtained by excluding the exterior of a large circle R from Dn, which vanishes

on the boundary of Dn and is equal on R to the maximum of un on R, then u n U

in D . As the domains D converge to D, it is known that the harmonic functionsn n
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U approach a harmonic limit U which vanishes on the boundary of D. Hencen

the limit solution u of (1.9) in D must vanish on the boundary C of D, since

O u- U in D

We conclude that p-uy 1 / 2 is the stream function of a parallel flow (1.3)

in fD, and therefore the virtual mass a for D has the desired oxtremal

property (1.4).

In the neighborhood of a point z of the extremal continuum W bounding D,

chosen in the half-plane y > 0 and not in B+b, we make an admissable variation

of the form

4 1.10) = z +Z-t

where O is an infinitely differentiable function which is identically 1

in a neighborhood C1 of z and vanishes identically outside a slightly larger

neighborhood. By Chapter II, formula (2.9.4), the variation of virtual mass o(

under such a shift is found to be

Ci ) &0( - Ret dxdy- 8 t [ Q(tj
DU z 4y2 (z-t)a 0

+ o(IE 2 )

where Qo(t) is analytic for t in (}and where E(t) is 1 for t in D and 0

for t exterior to D. Two applications of Green's theorem yield

(41.2) 6V- Re 2  + -t- + -z dxdy- 8E9t +

y 16y 4 Z t 8216t iy3 gt)

+ o(t.1 2 )

where Q(t) is another analytic function of t in C.

From the extrenal property (l-t) of %, re conclude that SO 0 for all

sufficiently small complex 6. Hence, by the usual argument

(41.3)srg~K=S -3u, u. 2 Jun
(41-13t ---- ]dxdy+ Q(t)

D Z t y 16y 4 iy
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inC. We conclude from (1.13) that u2 is continuous throughout C, if we
Ut

define it to be zero in the exterior of D. The continuity of u2 in thenth

neighborhood of each point z of W is the variational condition imposed upon W0

by (1.4) which will lead us ultimately to deduce that revolving W about the

x -axis generates a vortex sheet.

2. Reg_ art f thp, solutil.

Sinc is continuous infil, we can estimate the integrand in (1.13)
2

once again and prove that u2 actually satisfies a Lipschitz condition there.

tHence in the region ju t I > 0 we can solve the differential equation

(4 2.1) utdt+ it.dt - 0

for the level curves of u. In particular, any arcs of the boundary u- 0 of D

in the region jutj :0 must be differentiable curves. If we pick C to lie in

2this region, we can apply (1.13) repeatedly to show that ut has continuous

derivatives of several orders. Thus for a fixed determination of the square

roots involved, we show using the proof of the reflection principle that

(4.2.2) u (u ) {( 1l2 dz c+4 1/2d

is an analytic solution of (1.9) in the region l utI -0, and the boundary

arcs u- 0 of D there must be analytic. Formula (2.2) gives an analytic

continuation of u across these arcs according to which u transforms into its

negative as we cross the boundary, and is therefore two-valued.

In order to see that there actually exist arcs of W in the region Iutl t 0,

it is sufficient to notice that every point z 0 of W which can be touched by a

small circle R lying in D is of this type. For if g is the Green's function

of (1.9) in R with its infinity at the center of R, then for a small enough

we find that in a neighborhood of z in R
u

(/+,2.3) ua g
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Since u and g both vanish at z, we can take normal derivatives there to

obtain

(4..4) _a -''z-

whence Iut! u gtV 0 at z.

It remains to discuss those portions of W on which tuzI s O. iese

are identical with the subsets of W on which lIx+i Y , 1- O, and we shall use

properties of the quasi-conformal mapping

(4.2.5) - cP+iY

to discuss their nature. Let us denote by P' any region complementary to B+b

in which

(4.2.6) 0< i < ,

for some small £?0. The boundary I9x + iLP[ & of this region consists

of a finite number of analytic arcs which transform by (2.5) into the

circumference I wI - 6, covered finitely many times, say, m times. Since the

mapping w- C g+ i Y is univalent in the small, we conclude that the image

of P' in the circle 0-Z lw C E is a Riemann surface of m sheets. Hence the

boundary of F' contains at most m continua on which ITx+ ix -j s0, and we

shall prove that these continua reduce to isolated points.

We remark that the quasi-conformal mapping (2.5) has a dilation quotient

in P which is smaller than

(4.2,7) K - max (max y, max )

for all z-x +iy in P. If now one of the continua %Tx + iV -O bounding P

were non-degenerate, there would exist a positive lower bound S for the

tirich[et integral

f +tU2 dxdy

r
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of any function U in r which vanishes on the boundary portions 13)x+ i xLP

and is identically 1 on the boundary curves I + i Cx F . We define such

a function U by the formula

k 0 , r(4.-8) u % /

log l og I wl I rr

where 0 r c . We can estimate its Dirichlet integral in terms of the

quasi-conformal mapping w -= x + i-x to obtain (with w = u+iv)

(429) x
P r2 ~ u+~ dudvr w
r< I wk9,

2 T mK (lg 2 L2 d

(log t)r

The estimate on the right approaches zero as r--40, and this gives a contra-

diction of the hypothesis that the continua ' x? iX 0 on the boundary of F

do not degenerate to points.

In order to see quite clearly that the continua [?x+ iNx H 0 of the set

W all reduce to isolated points, we note that the analytic arcs of W in the

region 1If,+ jY >0 can be given a certain order as we proceed from b to B

along W. This follows from the fact that deleting a small arc from W must

dlsccnnect W, since itdiminishes the virtual mass C. The two disconnected

paits of W axe composed of those arcs which come before and those ihich come

after the deleted one, respectively. Thus any continuum of W on which

( xTw x I 0 must be preceded and must be followod by arcs of W in th- 2
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Vx + iyx O and therefore must be a boundary component of some region F
of the type (2.6). Hence any such continuum reduces to a point, and we can

conclude that these points are removable singularities of the solution u of

(1.9) defined by (2.2). For topologically more complicated problems of the

type (1.4) than we have posed here, the function u can have a certa In number

of branch-points where u vanishes, but in the present case, because of the

monotonic dependence of Q on D, this possibility is excluded. The extremal

continuum W must reduce to a simple arc without forks, since otherwise deletion

of a branch of W, decreasing 0f, would be feasable. The arc W is an analytic

curve, since it consists merely of a level curve u= 0 of a regular solution

of (1.9).

It follows from the above arguments that the surface of revolution about

the x -axis generated by W is analytic and that the speed IVTfI of the flow f

past this surface is continuous through it, so that the surface represents a

vortex sheet in the flow. One checks that on either side of the vortex sheet,

in the present example, the velocities have opposite directions. More compli-

cated vortex sheets with several branches and Corks can be constructed by the

same method with relatively little additonal difficulty.

3. fliqUa. aa

We sketch in this section a proof of the uniqueness of the extremal

curve W solving (1.4) which is based on the ideas of Chapter III. A possibly

shorter approach to the whole problem might be achieved through the Dirichlet

principle, but we prefer here to emphasize the use of variational methods.
,

Let W7 be any curve joining b to the set B or the x -axis. The curves W
.

and W , together with B and the x -axis, bound certain subregions Dl of D.

In each region D., we let U be the harmonic function which vanishes on the
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arcs of W bounding DV, which has the value i on the arcs of W bounding Dy,

and which has a vanishing normal derivative at any points of B or the x-axis

bounding DV. We denote by Wt the aggregate of all level curves U- t in the

various regions Dv and we denote by Ct the virtual mass of the flow (1.3)t.

past the object B+W t+b, In particular, Wo W and WIW , while o ,

and (A,1 C is the virtual mass coefficient corresponding to W.

From the formula

(4.3.1) 16 2 % 2( )2t A ud-

for the second variation of under a normal shift 8' of the boundary,

we derive the expression
2

(4.3.2) dIt +" 3 ( dt ) d
dt2  dt 4y2  dt

for the second derivative of C . By the continuity of (Vu)2 across W -if

and by (1.6), we have

(4.3.3) 1 t atIO 0

and by 
(3.2)

(4.3.4) .... >0 , 0%tcl
d2

It follows that o(t >0 for t >0, and, in particular,

(4-3-5) Q(* > CK

provided W does not coincide with W. Formula (4.3.5) establishes that the

extremal curve W for (1.4) is unique. A closer examination of the proof even

shows that an arbitrary axially symmetric vortex sheet joining b to B has a

meridian curve satisfying (1.4), and hence a vortex sheet such as we consider

here must be unique.
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CHAPTM V

VARIATION OF EIGENVALUES

i. Ana1lic dpndene on paramQltrz.

We consider now the eigenvalue problem of determining a non-trivial

solution of the partial differential equation

which vanishes on the boundary C of the plane domain D. We consider the

eigenvalues X as functionals of the varying domain D.

Hilbert [11] proved the continuous dependence of the eigenvalues A on

the coefficients of a differential equation if the basic domain D is kept fixed.

We can utilize his method and his result by the artifice used in Chapter II.
*

We transform the domain D into a domain D by means of a deformation (2.2.2)
and ask for the eigenfunctions u (x1,x2) and sigenvalues A of the same

equation (1.1) with respect to the new domain D*. Then, we introduce the

functions

(5.1.2) *x

defined in the fixed domain D and treat the eigenvalue problem for this

fixed domain arising from the transformation. We may describe U(xl,X2 ;S-) as

an eigenfunction in D with respect to the differential equation (see (2.2.9)

and take p =0)

(5.1.3) L I [u A u - 0

and the boundary condition U-0 on C. In this way, the domain dependence of

the eigenvalue A* is translated into its dependence on the coefficients

of the new differential operator L .
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We may now proceed as in Chapter II and derive the variational formulas

for the eigenvalues \ by a proper use of Green's identity. We may assert

in view of (2.2.8) that all coefficients of the differential expression

L5[Ul depend analytically upon the parameter E. It is then easy to see

that all non-degenerate eigenvalues A and their corresponding eigenfuncttons

U depend analytically on e, provided U is normalized.

In order to prove this statement we observe at first that the Gteen's function

g(PQ; g) belonging to the differential operator I.F depends analytically on PS

In fact, the parametrix function s(PQ; £) of this differential operator,

defined for two independent variables in analogy with (2.3.5), may be chosen

to depend analytically on P for P$Q. The Green's function g(P,Q;t ) may then

be obtained in form of a Neumann's series which solves the integral equation

(2.4.20) with the analytic kernel (2.4.21) in C. Since the Neumann's series

converges uniformly, we see that g(PQ; s) depends analytically upon this

parameter also, at least in a neighborhood of the value F-- 0.

The eigenfunctions U(P; C) of the differential equation (1.3) way also

be considered as eigenfunctions of the integral equation

(5.1.4) U(P;S)- Ae ig(PQ; )U(Q;P )(Q)d t - 0

D
with the same eigenvalues A . The eigenvalues A* appear as the roots of

an entire function D £ 31 in A which is also analytic for sufficiently
small P. If X is non-degenerate, we have a-- Dt*; 6 0 near the

value F,- 0 and A* - (C) is an analytic function of e. Since the

eigenfunctions U(P; F.) can be represented as Fredholm minors which depend

analytically on 5, we have thus also proved the analytic dependence of

U(P; E) on E , if the corresponding aigenvaluE is non-degenerate.
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We will apply this result in particular to the case of the lowest eigen-

value of the partial differential equations (1.3) and (1.1) and its corresponding

eigenfunction. It is well known that the lowest eigenvalue of an equation (I.i)

is non-degenerate and consequently we may develop U(P. £2 and ( 6) into

power series in E which converge for small values of S. Henceforth, A (t)

and U(P; e.) shall always denote the lowest eigenvalue and its corresponding

elgenfunction. It is obvious how to generalize the following considerations

to the case of a non-degenerate eigenvalue of arbitrary order.

Since we can put

(5-1.5)- + + EA 1 e 2 A 2

(5.1.6) U(P; - (P) +U 1 CP)+ IFu 2

where X and u (P) are the eigenvalue and eigenfunction of the original

domain D, we may calculate all other terms Av and u ,(P) of the above series

development by inserting these series into (1.3) and comparing the coefficients

of equal powers of S . This procedure is called in physics the "perturbation

method" and is widely used in applications. It is easy to handle and satis-

factory in most problems in applied mathematics. Obviously, it works only in

the case of analytic coefficients in the differential equation. We can now

apply this procedure in order to study the dependence of the eigenvalues upon

their domain of definition.

We introduce for this purpose the tensor

(5.1.7) Uik(P) M 2 U_0_ u 0.2 (Vo2

ik dx i  ?x ik o

which is symmetric and satisfies the equations
2 Z

( 8lo8) -_ - A _ 2 U 2
Mxi o
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We obtain the following formula similar to (2°6.6):

2 O( §

jikO D x-, k-i ?x A ok 0

It is easily seen that by virtue of the equations (1.8) the integrand is a

divergence term and that the expression (1.9) may be reduced to an integral

extended over the boundary C of D. In this way, we obtain in analogy with

(2.6.15)

(5.1S10)A - C )2  ds

This formula is due to Rayleigh and is derived here from the method of

interior variations. If we use the complex notation (2.8.6) introduced

in Section 8 of Chapter II, we find

(5.1.1) I _ Re I S ( )2 F)ud

Let us remark finally that the formula (1.10) exhibits clearly the

monotonic dependence of the eigenvalue A upon the domain D. We see that

for av >0, that is, for a shrinking domain D, the eigenvalue A increases.

Analogous formulas can be given for all higher non-degenerate eigenvalues of

the differential equation (3.1) and similar conclusions can be drawn.

2. Thep Hjlbert-GPX=__n~ntio.

In this section we will calculate the first coefficient u (P) in the

development (1.6) of the eigenfunction U(P;6-). In this way, we will also

prepare the determination of the term A12 which will give the formula for
the second variation of the eigenvolue.

In order to calculate u1 , we define the Hilbert-Green function F'(P,Q)

for the differential equation (1.1) and the domain D as follows:
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a) The function F(PQ) is twice continuously differentiable in D,

except at P-Q. It satisfies the inhomogeneous partial differential equation

(5.2.1) L [ (P,Q)]+ 0 F(P,Q) -Vr(P,)+ Aor(Pq)
__ fnN. Q

0 0

b) The function F(PQ)+J_._ log PQ is continuously differentiable

in D.

c) f(F,Q) vanishes for PEC, QCD

The Hilbert-Green function has to be applied to differential operators

for which a proper Green's function does not exist, as is the case for (1.1).

The existence of this function can easily be shown from the basic theorems

on integral equations. In fact, let G(P,Q) be the Green's function of D

with respect to the differential equation L 0u] = 0. We have obviously0

(5.2.2) 6 (P) A0oG(PsQ)0(Q)d7 Q

and f(PQ)-G(PQ) - H(PQ) is a continuously differentiable function in D

which vanishes for PC. H(PQ) satisfies the differential equation

(5.2.3) 7 (P, Q) + A0 H(P,Q) - u(P) uC(Q)- AoG(PQ)

If we can show conversely that (2.3) has a continuous solution H in D which

vanishes for PE C, we can construct P(P,Q)- G(P,Q)+ H(PQ). The necessary

and sufficient condition for the existence of a solution of the inhomogeneous

differential equation (293) which vanishes on the boundary C of D is the

orthogonality of its right-hand side to the eigenfunction u0 (F). But this

condition is fulfilled in view of (2.2) and the existence of the Hilbert-

Green function has thus been established.
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We observe that the above conditions (a), (b), (c) do not yet determine

fl(P,Q) uniquely, since the addition of any multiple of u0 (P) to P(PQ)

does not affect these requirements. We determine F(P,Q) uniquely by the

additional condition

(5.2.4) ss flCF1Q)u 0CQdtr. Q 0
D

It can be shown in the usual way that the Hilbert-Green function f(PQ),

which is now unique, is symmetric in both its argument points.

Consider now a function v(P) which satisfies the inhomogeneous equation

(5.2.5) Le0Vl+ X v(P) - f(P) , v(P) - 0 for P.C

We have by Green's identity and the vanishing of r and v on C

(5.2.6) ffVLo'Er- PLo VdaQ = v(P)

Using now (2.1) and (2.5), we obtain the following representation for v(P):

(5.2.7) V(P) - -1frmvfc(QdzQ +%U0 P jju.0 Qv dr Q

This result is analogous to the solution (2.1.6) of the corresponding

inhomogeneous equation (2.1.5) in the case when a proper Green's function exists.

We observe that equation (2.5) determines v(P) only up to a multiple of the

eigenfunction u (P), which is clearly shown by the solution formula (2.7).0

We remark also that f(P) cannot be prescribed arbitrarily, but must be

orthogonal to the eigenfunction u (P).

For later applications we want to prove that the quadratic functional

(5.2.8) ?fy,rJj§ SSf(P5Q)fCP)fCQ)dtdrt'
D D

based on the Hilbert-Green function is positive semi-definite and that it

vanishes only if f(P) is a multiple of the eigenfunction u0 (P). We may
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put every function f(P) into the form

(5.2.9) f(P) - u(r)fu0d +f 1 (P)

D
where f!(P) is orthogonal to u0(P). Because of (2.4), we have

IF1 ~
05.2.10) /i j-

so that our assertion will be proved if we show that ft[,fJ is positive-

definite for all functions f(P) which are orthogonal to a 0o(P).

For all such functions f(P) the inhomogeneous equation (2.5) has

solutions v(P) of the form (2.7). Hence, we may write

(5.2.11) Xff a -J fC(P) v(P) d1Cp SS (Lo 1v 1 Aov) vdt:

D D

Applying finally Green's identity, we obtain

(5.2.12,) ff3. IS vv2_ AV2 •c

It is well known that we can characterize the first elgenvalue of the

differential equation (1.1) as the minimum value of the ratio

C V v 2 l dV v2 d'U
D /1

for all continuously differentiable functions v(P) in D which vanish on

the boundary C. The minimum value is accepted only if v(P) is a multiple

of the eigenfunction u (P). Hence, we conclude from (2.12) that0

(5.2.13) e/{f ,f3I >?.o

for all functions f(P) which are orthogonal to u 0(P). Equality can hold in

(2.13) only if v(P) is a multiple of u (P), which implies by (2.5) that

f(P) -0. This shows the positive-definite character of / fff}
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We apply now the solution formula (2.7) to the equation

(5.2.14) Lo[u ]  oUl A1u - L [ u ]. Auo(vx 10 1 0 o 0 0x,1  ?x 2

obtained by comparing C terms in the relation found when we insert (1.5)

and (1.6) into (1.3). This g~ves

(5.2.15) uIjP) -u (Q [LIu0+ A u0C) + ail j R Q)dZQ 1 .. U 0C()
D 0a

where

(5.2.16) 2 a S + *"2 )dT,

D

We can simplify the result (2.15) if we introduce the symmetric

variational tens or

(5.2.17) V (P;Q) s + Cr)
ik xxk 'a X1,x

- SikvUo (P)" vr(P,Q)

We may then bring (2.15) into the form

2 fL 2
(5.2.18) ul(Q) - Vik(P;Q) __ + E(A o2k)Uo (P;Q d

S,k-I

+ A vo(Q)

We have the differential equations
2 k -3 V~kVQ "-o _ e(P) r(p;Q) I+ u o(Q) __ u (op)2

(5.2.19) L i Vk(P; Q)uu u

Hence, we may bring (2.18) into the divergence form

>1 V1 (P; Q)S + ' S u (P)r)
(5.2.2o) u1I(Q) -k I1 1~ 0 ko0 PQ) ,,D k i 1 1_k

U (Q)3 ? (S u 2)dz
2 o Dk 1 xk



- 95 -

We can reduce this domain integral to a line integral extended over the

boundary curve C of D. We use the fact that P and u0 vanish on C and take

into account the singularity of the tensor Vik at the point Q. We obtain

2 'u U £d ticQ U0 P
(5.2.21) u( -() S.(Q) -(S"V)ds

C

Let us return to the eigenfunction u (Q; £2 of the original differential

equation (1.1) with respect to the variable domain D*. Since

(5.2.22) U(xlx 2 ; E-) = u*(xl+ES 1,x2+aS2; a)

we derive from (2.21)

* C VF(PQ} S (P)

(5.2.23) d -(Q- (S -P)9

or, in equivalent variational form

(5.2.24) Su(Q) =r -PQ) U S-Vds

C 
P

The function

(5.2.25) h(Q) (- (S -(P ) ds
C

will play a role in the second variation of the eigenvalue A. We observe

that because of (1.10) and (2.1)

(5.2.26) L0[h(Q)+ / h(Q) - -A U (Q)

and we verify easily that h(Q) has on C the boundary values

'u 2 -du (Q)

(5.2.27) h(Q)=-- (3v) 0- ', ( -
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3. § qIx a xvf the QgfvaJm .

We are now able to calculate the coefficient A 2 in the series development

(1.5) for the eigenvalue A (F) under a deformation (2.2.2) corresponding to

a normal shift of C. It is possible to achieve by a laborious process of

rearrangement of terms and of integration by parts a rigorous derivation

very similar to those performed in Chapter II. The end result of the

calculations can be obtained easily, however, by the following heuristic

argument.

We suppose that C is an analytic curve and that u(P) and u*(P) are both

regular functions in the original domain D and satisfy the differential

equations

2 2* *
(5.3.1) Au+ A u - , U + u- 0

in D. We apply Green's identity

(5.3.2) jJu 16u+ A u ud*±+ A*U*]}dt-
D

(U 11 '?V)as A (- A*) uu dT
D V

C D

Since u(P) vanishes on C and in view of (3.1), we obtain

(5.3 .3) (At A )Sjuu*dz - x 2-11:iid
D C

We observe that because of (2.23) and (2.25)

(5.3.4) u (P) - u(P) + F h(P) + o(F,

Assuming u (P) vanishes on a deformed curve C . we have

(5.3.5) 0 u (P*) = u* 0 (F)&+ J N(s) + 2Ns) 2 +...
0-2 2

where EN(s) represents Vie amount of the normal shift from C to C* at the

point P. Hence
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(5.3.6) A* A[lS hudVz 0o(&)

D
2 2 )2

We observe that the last right-hand integral can be written in view of (2.27)

and (2.26) as

Finally, we * hd - ON vh2 - A dt + hudt

Fialyweput * A+ EAI +L- A2 + .. and find by use of (ioi0) and by

(5.3.8) C9 " LI 2 -/--1 N(s) 2  21E(h) 2  Ah2 d

2 3 2 C 22 ' 9V aZ

Since u ) satisfies the first equation (3.1) and vanishes on C, we have

n (23.9) as _

8..,, p dv,

where p(s) is the radius of curvature at the point P with the parameter

value a. Hence, we may bring (3.8) also into the form
(5.3.10) A2 =- 5 (db u 2  N) ds 2 [(V h) 2 Nhol d

-V 0

In general, hCP) will not vanish identically on C and we cannot assert that

the second right-hand integral is non-negative. Thus, even in the case of a

convex curve C (p5-0) we cannot be sure that A2 is negative.

We shall consider in the next sections variations of a more special form

for which the convex dependence of a upon the variation parameter can be

shown. It will appear that interior variational formulas are more convenient

for this purpose than formula (3bl0).
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4. Covexity.

The variational formulas for the eigenvalue A and the eigenfunction

u(P) become very simple if we assume that the complex vector

F(z,z) -S1 (x,,x2 ) + v3 2 (xl,x2 )

is an analytic function of the complex variable z. In this ease, we have by (1.11)

(5.L. 1) d-2 A f e (r ) 2)2d§
£,,0

The analogous formula for d2A/d 2 at P-0 under a variation z -z+eF(z)

is "re difficult to derive from (3.10), because such a deformation is not

equiralent to a normal shift when second order terms are involved. But for

a ccrformal mapping, LE[U] = VU and Q- 11 + S F" 2, so that substitution

of (L.5) and (1.6) into (1.3) and comparison of terms in S2 yields

(5.4.2) IV2U2 +>\ Au, - -2X 1 N- 4A u1 IlefF'j - 2u -4 uo Re{IF'3}-2 A0 %.IF' 12

Since 2 vanishes on C, the eigenfunction u0 must be orthogonal to the right-

hand side of (4.2), and this gives

(5.i4,3) A = -4ASU 2 Re{JF'. dT - 2 SuIF2r -2Xj, uuYdt
D D D

- 4AX5 u u 1Re{Fr Idt

UsiDg the condition

(5.-4) u 1 + U1 - -AlUo -2Auo Re fF'3

for 5 terms in (1.3) to cancel and noting that with

(5.4-5) f-C A I u0+2AoU Re{Re }

formula (2.12) gives

(5 .4.6) fj[(7)2 2 I~dzU

D
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we bring (5+.3) into the form

(.) 2  0

Using (4.1), we simplify (4.7) to obtain

' 2 ( -12 2T
(5.4.8) 2 2u\ aXZJ

We observe that the right-hand side of (4.8) is always negative, except for

the case F'(z) O; the deformation induced in this exceptional case is a

translation of the whole plane, and it is obvious that in this case, indeed,

(C) A(0). Thus, we are led to the differential inequality

(549) 2 )
d F,2 P3 d &2 - de

whien proves the convexity of the reciprocal of the eigenvalue under

infinitesimal analytic deformations.

In order to generalize this result to finite deformations, we consider

the partial differential equation

(5.-4.10) v2u A h'(z,T)12 us , u - 0 on C

where h(z,T) is an analytic function of the complex variable zE D and the

real parameter T, 0 T tl. We set h' - and assume h'(z,O)- 1.

Obviously, (4.10) is the membrane equation for a domain DT obtained from D

by a mapping h(z,T), referred back to the domain D. We observe that the

differential equation can be treated independently of the univalency of

h(z,T) and permits a definition of eigenfunctions and eigenvalues of the

membrane problem also for non-schlicht domains. We normalize the eigenfunctions

u(z;T) of (4.10) by the condition

(5.4.11) u2h'(zT)12 dC - 1



- 100-

and consider uTv u(z;T) and AT= A(T) in their dependence on T. We may

repeat all calculations of this chapter leading to expressions for dT and
2 dT

dT2- , but now these derivatives can be determined for 
finite values of T.

We introduce a Hilbert-Green function flT(z, 4 ) by the conditions

(5.4.12) 2PT(Z,4) + AT h'Cz,T)1 2 rT(z.) -, l(z,Tl 2uT(Z)UT()

(5.4.1-3) PT(zj) + _I log lz-41

is continuously differentiable in D,

C5.-4.14) , - 0 for zec, 6=D

(5.4.15) Jf i7z,)uTC(z)Ih"'Cz, T) 12a-C - o$2 -o

The existence of such a fundamental function can be shown in exactly the

same manner as was done in Section 3. Let OAT ' be the quadratic functional

defined in (2.8), but with rT instead of P as kernel. We see immediately

that XT {ffj is also semi-definite and vanishes only for the elgenfunction uT.

One finds by easy computation

(5.4.16) dT " - J (T h-1
D

and

(5417 2  2 r~S(41) 2- T  fTfT3+ A(T) h (zi)I uT(z d odT2  _(T d e T 2

D

with

(5.4.18) fT - uTCz)T [ h'(z,T)12 + ACT) -2 (lh/(z,T) 2)1

Thus, we may write

(5.4.19) 2( ) = I T' T% +2) 2  lh'(z,T) 12  2 dt
dT 2 A D.?T2U
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The convexity of ACT) is thus ensured if ue can assert that

1 2
(5~.2O ~ lh'(z,T)I O for Z r=l

This is, for example, the case if

(5.4.21) h,(z, T' z

since we have then

(5.4.22) -2 1h-(zT) -21F,(%)

We have shown that the reciprocal A(T)'-1 of the eigenvalue of a family

of domains DT is a convex function of the parameter T if the domains are

obtained from the original domain D by the conformal mapping (4.21). It is

not necessary that all domains DT be schlicht in the complex plane.

As an application we consider the family F of univalent functions f(z)

in the unit circle with f(O)-01, f'(O)-1, and ask for a function fm(Z) e

w-Ilich leads to, a domain A with maximum first eigenvalue A of the membrane

problem. We introduce the function h(z,T)- z+ T[f (z)- z! ar4 the corresponding

eigenvalue AT. We find from (4.16) and (4.19)

(5-5.1) 2 (-) .J 4 2 Re ( j+2TIf 121

V2 A •

DD

Observe that the first derivative of . vanishes for T=O; this follovs from

the fact that f'(N)- 1 vanishes at the origin and from the radial symmetry
m

of the first eigenfunction for the circle. Hence by ('5o2), -- (l/A ) will be
dTL

positive for all T - 0 and ve find

(55,3) L > _I-
A (17 Ao
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if A is the lowest eigenvalue of the unit circle. But since A(1) is0

the largest possible value of A , we conclude that f (z)z; that is, among
m

all equivalent domains the unit circle has the largest eigenfrequency. This
I!

result is due to Polya-Szeo ,16 J.

We obtain the following corollarys if a domain D satisfies Lhe condition

5Siu2Fz)av - 0

D

for all functions F(z) regular in D and vanishing at a point PCD, where u is

the first eigenfunction of D, then D is necessarily a circle with P as center.
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